

ENSR

10461 Old Placerville Road, Suite 170, Sacramento, California, 95827-2508 T 916.362.7100 F 916.362.8100 www.ensr.aecom.com
May 5, 2006

Mr. Craig Hunt North Coast Water Board 5550 Skylane Boulevard, Suite A Santa Rosa, CA 94503-2097

RE: Quarterly Groundwater Monitoring Results/ Remedial System Status Report First Quarter 2006
Former Unocal Bulk Plant No. 0813
122 Leslie Street, Ukiah, California
RWQCB No. 1NMC405
ENSR Project No. 06940-264-100

Dear Mr. Hunt:

ENSR Corporation (ENSR) has been authorized by Union Oil Company of California (Unocal) to perform quarterly groundwater monitoring and to operate and maintain the groundwater remediation system at the site located at 122 Leslie Street, Ukiah, California (**Figure 1**). The site is a former bulk plant with a chain link fence around its perimeter. The locations of former and current site features are illustrated on **Figure 2**. Quarterly groundwater monitoring is intended to evaluate the distribution of petroleum hydrocarbon constituents in groundwater beneath the site. This report summarizes results of the samples collected from the site during the first quarter 2006. A section has been added to this report summarizing the status of the ozone sparging system that began operation in April 2005. The field work was performed in accordance with the field methods and procedures included in **Attachment A**.

Background

Two groundwater monitoring wells (MW-7 and MW-12) were installed as part of a soil and groundwater investigation associated with the former D.Z., Inc. Bulk Plant located adjacent to the former Unocal site's southern property boundary at 134 Leslie Street. In 1999, a soil and groundwater investigation was conducted that included advancement of on-site soil borings B-1 through B-7. A supplemental evaluation of soil and groundwater followed that included the advancement of on-site soil boring B-8 and the installation of on-site groundwater monitoring wells MW-1 and MW-2. A further supplemental evaluation of soil and groundwater beneath and in the vicinity of the site was conducted in 2002 that included drilling eight soil borings and installing groundwater monitoring wells MW-3 through MW-6 and MW-8. A door-to-door sensitive receptor survey within a 500-foot radius of the site and an underground utility search within the vicinity of the site were conducted in 2002.

In a letter dated November 20, 2003, the Regional Water Quality Control Board, North Coast Region (RWQCB) approved a Corrective Action Plan prepared by Environmental Resolutions, Inc. (ERI) of Petaluma, California dated June 18, 2003. In late July 2003, ERI installed the nine C-Sparge/SVE wells associated with the remediation system at the site. On May 20, 2004, the RWQCB verbally approved a remedial design plan (RDP) dated February 3, 2004 prepared by ERI and reviewed by ENSR. The approved remedial options were ozone microsparging (C-Sparge™) and soil vapor extraction (SVE). Upon review of the completion depths of the C-Sparge/SVE wells, it was ENSR's opinion that the C-Sparge wells were set too deep to effectively remediate the groundwater beneath the site.

In a telephone conversation with the RWQCB on October 14, 2004, ENSR proposed collecting groundwater samples from selected on-site C-Sparge wells for chemical analysis to determine if the groundwater has been impacted at the screened interval depths [approximately 32 to 35 feet below ground surface (bgs)] of the C-Sparge wells. Based on the analytical results, ENSR submitted a *Revised Remedial Design Plan* dated December 7, 2004. ENSR received a verbal approval from the RWQCB in mid-December 2004 and began implementation of the revised RDP in early January 2005.

On January 12 and 13, 2005, Woodward Drilling Company of Rio Vista, California (C-57 License #710079) advanced soil borings AS-10 through AS-18 under the oversight of an ENSR geologist. The borings were advanced using a truck-mounted drill rig each to an approximate depth of 20 feet bgs using 8.25-inch diameter hollow stem augers. The soil borings were completed as air sparge wells AS-10 through AS-18. Sparge well construction details will be provided in ENSR's forthcoming Advanced Oxidation Process/ Biostimulation System and Remediation Well Installation Report.

A construction subcontractor (W.A. Craig, Inc. of Dixon, California) installed the ozone sparging system at the site in March and April 2005 under ENSR supervision. System operation began on April 18, 2005.

Groundwater Level Measurements

Depth to groundwater levels were measured in monitoring wells MW-1 through MW-9 on February 20, 2006 and are presented in **Table 1**. The ozone sparging system was shut down prior to monitoring to allow groundwater levels to stabilize prior to collecting depth to groundwater measurements. Groundwater elevations were calculated and used to construct a groundwater elevation contour map included as **Figure 3**.

On February 20, 2006, the groundwater flow direction just east of the site was generally south-southeast with an average hydraulic gradient of approximately 0.008 feet per foot (ft/ft). On-site, the groundwater flow direction was generally to the east with an average hydraulic gradient of approximately 0.014 ft/ft. These directions and gradients are consistent with those historically observed at the site. Copies of the groundwater sampling information sheets are included in **Attachment B**. A summary of groundwater elevation data determined to date is presented in **Table 1**.

Groundwater Sampling and Analytical Results

Groundwater samples were collected from monitoring wells MW-1 through MW-9 on February 20, 2006. Groundwater samples were submitted to California Laboratory Services in Rancho Cordova, California (a state-certified laboratory) under chain-of-custody (COC) protocols. Samples were analyzed for benzene, toluene, ethylbenzene and total xylenes (BTEX) by Environmental Protection Agency (EPA) Method 8260B, total petroleum hydrocarbons as gasoline (TPHg) by EPA Method 8015M, total petroleum hydrocarbons as diesel (TPHd) by EPA Method 8015M, total recoverable petroleum hydrocarbons (TRPH) also referred to as Hexane Extractable Material with Silica Gel Treatment (SGT-HEM) by EPA Method 1664, and total lead by EPA Method 6010B. Additionally, the samples taken from MW-1 and MW-2 were analyzed for bromate and bromide by EPA Method 300, hexavalent chromium by EPA Method 7199, molybdenum and vanadium by EPA Method 200.7, selenium by EPA Method 200.8, and pH by EPA Method 150.1. These analytes were added to the sampling regimen to monitor for the formation of dissolved phase metals resulting from the oxidation reaction created by the ozone application.

TPHd was detected in monitoring wells MW-1, MW-2, and MW-3 with a maximum concentration of 13,000 micrograms per liter (μ g/L) in MW-1. TPHg was detected in monitoring wells MW-1, MW-2, and MW-3 with a maximum concentration of 1,400 μ g/L in MW-1. Benzene concentrations were not detected above the laboratory reporting limit of 0.50 μ g/L in any of the monitoring wells sampled during the first quarter 2006 event.

Cumulative groundwater sampling results are summarized in **Table 1**. On March 10, 2006, ENSR confirmed that the North Coast Water Board does not require Total Oil and Grease (TOG) or TRPH to be analyzed for this site. Therefore, the TRPH results were not tabulated. Future groundwater samples will not be analyzed for TOG or TRPH. A map depicting dissolved concentrations of TPHg, TPHd, and benzene in groundwater for the first quarter 2006 is included as **Figure 4**. Isoconcentration contour maps for TPHd and TPHg in groundwater for the first quarter 2006 sampling event are included as **Figure 5** and **Figure 6**, respectively. A

copy of the certified laboratory analytical report with chain-of-custody documentation is included in **Attachment C**.

Ozone Sparging System Description

The Advanced Oxidation Process/Biostimulation (AOP/B) system is primarily an ozone sparging system with capabilities for enhanced chemical oxidation and biostimulation through the addition of supplemental oxidizing agents and/or nutrients.

The AOP/B system delivers ozonated air from inside a modified freight container (remediation enclosure), to the subsurface via sparge tubing and PVC piping. The ozonated air is delivered through micro-porous sparge points installed in the bottom of sparge wells. The depth of the sparge wells is several feet below the water table. Ozonated air is typically delivered at flows of approximately one to five standard cubic feet per minute (SCFM) and at pressures from 7 to 25 pounds per square inch (PSI), depending on subsurface conditions. Ozone concentrations in the process flow stream typically range from 1,500 parts per million by volume (ppmv) to 10,000 ppmv.

The AOP/B system is operated using a programmable-logic-controller (PLC) automated system capable of operating individual sparge points or several sparge points in any desired sequence. The system is equipped with an ozone sensor that transmits a signal to the PLC which is programmed to shut the system down in the event of an ozone leak within the remediation enclosure. The remediation enclosure is air conditioned and thermally insulated to maintain a constant temperature and thereby protect the electronic components. The thermal insulation also serves as a sound barrier to reduce noise levels outside of the remediation enclosure created by operation of the air compressor, air conditioner, and cooling fans.

Ozone Sparging System Operation

The system currently cycles between sparge points on a 37-minute sequence per cycle. Sparging sequences begin with five minutes of air flow, followed by 30 minutes of air/ozone flow, then followed by two minutes of air flow (to purge the conveyance piping and tubing). The PLC program executes 12 air-ozone-air cycles with three 15-minute rest cycles in between every third sparge cycle. The program repeats after application to each sparge point.

Modifications have been made to the PLC program to reduce the ozone loading near MW-2 in order to minimize the occurrence of undesirable byproducts such as bromate and hexavalant chromium.

Sparging is performed sequentially between sparge points to minimize the local impact on the hydraulic gradient and to prevent further mobilization of the contaminant plume. The ozone application time interval relates to the approximate time it takes for a consistent flow pattern to develop and to achieve an optimum radius of influence. The system shuts down after the entire sequence to allow the equipment to cool.

Ozone Sparging System Performance

ENSR is documenting the AOP/B system performance with monthly monitoring and analytical analysis of three-casing-volume purged samples from MW-1 and MW-2. Monthly samples have been collected at MW-1 and MW-2 since the system startup in April, 2005. These groundwater samples are being analyzed for TPHg, TPHd, and BTEX compounds. Additional analyses are also performed to ascertain the possible presence of dissolved metals. Results for samples collected at MW-1 and MW-2 as part of the remedial status evaluation are provided in **Table 2**.

Graphs depicting TPHg and TPHd concentrations over time for MW-1 and MW-2 are included as **Figures 7** and **8**, respectively.

Conclusions/Recommendations

- TPHd was detected in monitoring wells MW-1, MW-2, and MW-3 with a maximum concentration of 13,000 μg/L in MW-1. TPHd was detected in the same three monitoring wells in the previous quarter with a maximum concentration of 10,000 μg/L in MW-1.
- TPHg was detected in monitoring wells MW-1, MW-2, and MW-3 with a maximum concentration of 1,400 μg/L in MW-1. TPHg was detected in two monitoring wells (MW-1 and MW-3) in the previous quarter with a maximum concentration of 360 μg/L in MW-1.
- Benzene concentrations were not detected above the laboratory reporting limits in any monitoring wells sampled during the first quarter 2006 event. Benzene was detected in MW-1 in the previous quarter at a concentration of 0.41μg/L.

ENSR recommends continued monthly groundwater monitoring in MW-1 and MW-2 to assess performance of the AOP/B system, as well as quarterly groundwater monitoring to assess the dissolved concentrations of petroleum hydrocarbon constituents. ENSR personnel met with the North Coast Water Board in January 2006 to assess the AOP/B system performance and discuss the path toward regulatory site closure. It was determined that ENSR will continue to operate the AOP/B system until groundwater contamination levels approach Regional Water Quality Control Board water quality objectives.

Future Work

The next quarterly groundwater monitoring and sampling event is scheduled for May 2006. ENSR will also be monitoring performance of the AOP/B system with monthly sampling of MW-1 and MW-2. Quarterly AOP/B system performance monitoring updates will be provided.

Remarks/Signatures

The interpretations in this report represent our professional opinions and are based, in part, on information supplied by the client. These opinions are based on currently available information and are arrived at in accordance with currently accepted hydrogeologic and engineering practices at this time and location. Other than this, no warranty is implied or intended. If you have any questions regarding this project, please contact Mr. Mike Berrington at (916) 362-7100.

Sincerely,

ENSR Corporation

John M. Warren, R.C.E. No. 34168

Senior Project Engineer

For: Mike Fischer, E.I.T.

Project Engineer

Michael A. Berrington, P.G. No. 7124

Senior Project Manager

MF/dk

cc: Mr. John Frary, Union Oil Company of California

Attachments

Figures

- 1 Site Location Map
- 2 Site Plan
- 3 Groundwater Elevation Contour Map, February 20, 2006
- 4 Petroleum Hydrocarbon Concentration Map, February 20, 2006
- 5 TPHd Isoconcentration Map, February 20, 2006
- 6 TPHg Isoconcentration Map, February 20, 2006
- 7 TPHg and TPHd Concentration in MW-1
- 8 TPHg and TPHd Concentration in MW-2

Tables

- 1 Groundwater Monitoring Data and Analytical Results
- 2 Ozone Sparging System Monitoring

Attachments

- A Field Methods and Procedures
- B Groundwater Sampling Information Sheets
- C Laboratory Analytical Results With Chain-Of-Custody Documentation

QUARTERLY MONITORING REPORT 1st QUARTER 2006 FORMER UNOCAL BULK PLANT 0813

FIGURE NUMBER: SHEET NUMBER

ENSR		ENSR CORPORATION 10461 OLD PLACERVILLE ROAD SUITE 170 PHONE: (916) 362-7100	FAX: (916) 362-8100	WEB: HTTP://WW.ENSR.AECOM.COM
FEBRUARY 20, 2006	QUARTERLY MONITORING REPORT 1st QUARTER 2006 FORMER UNOCAL BULK PLANT 0813	EET NIA	PROJECT NUMBER:	1" = 40' 3/20/06 PR 06940-264
FEBRUARY 20, 2006	RLY MONITORING REPORT 1st QUAR ¹ FORMER UNOCAL BULK PLANT 0813	122 LESLIE STREET UKIAH, CALIFORNIA	DATE	3/20/06 PR
	QUARTERLY N FORI		SCALE	1'' = 40'

FIGURE NUMBER:

3

SHEET NUMBER

Figure 7
TPHd and TPHg Concentrations in MW-1

Former Unocal Bulk Plant No. 0813

Figure 8
TPHd and TPHg Concentrations in MW-2

Table 1Groundwater Monitoring Data and Analytical Results

WELL ID/	DATE	DTW	GWE	TPHd	TPHg	В	Т	Е	Х	Total Lead	TOG
TOC*(ft.)		(ft.)	(msl)	$(\mu g/L)$	$(\mu g/L)$	$(\mu g/L)$	$(\mu g/L)$	$(\mu g/L)$	$(\mu g/L)$	$(\mu g/L)$	$(\mu g/L)$
MW-1	_				0						
607.93	08/07/02 ¹	16.11	591.82	1,400	370 ²	< 0.50	< 0.50	1.3	< 0.50	<75	<5,000
	11/13/02	17.35	590.58	1,500	740	< 0.50	< 0.50	6.7	< 0.50	<75	<5,000
	02/28/03	7.26	600.67	1,100	89	< 0.50	< 0.50	< 0.50	< 0.50	<75	<5,000
	04/30/03	4.29	603.64	570	640	< 0.50	< 0.50	1.8	< 0.50	<75	<5,000
	08/21/03	13.93	594.00	690	180	1.5	< 0.50	0.87	2.1	<50	<5,000
	11/13/03	20.25	587.68	3,100	410	< 0.50	< 0.50	0.64	< 0.50	<75	<5,000
	03/15/04	6.65	601.28	4,900	230 4	< 0.50	< 0.50	< 0.50	2.0	7.6	<5,000
	05/19/04	10.50	597.43	8,600	720	< 0.50	< 0.50	3.8	3.7	9.0	5,000
	08/11/04	16.81	591.12	25,000	470 ⁴	1.4	<1.0 ⁶	2.2	4.5	15	<5,000
	11/11/04	17.73	590.20	5,500	750 ⁴	1.3	4.1	11	6.4	6.8	<5,000
	02/11/05	7.67	600.26	11,000	610 ⁴	< 0.50	0.62	2.5	3.4	<5.0	<5,000
608.62	05/19/05	6.04	602.58	4,500	1,100	<1.5	<1.5	<2.5	<2.5	5.4	NA
	08/16/05	11.80	596.82	83,000	2,000	0.39	< 0.30	< 0.50	< 0.50	22	5,200
	11/16/05	17.30	591.32	10,000	360	0.41	< 0.30	< 0.50	< 0.50	12	NA
	02/20/06	7.24	601.38	13,000	1,400 4	<0.50	4.4	7.6	5.6	<50	NA
MW-2											
607.78	08/07/02 ¹	17.35	590.43	260	170 ²	< 0.50	< 0.50	0.91	< 0.50	<75	<5,000
	11/13/02	20.23	587.55	2,100	1,200	<1.0	<1.0	19	<1.0	<75	<5,000
	02/28/03	7.55	600.23	1,500	330	< 0.50	< 0.50	2.4	0.57	<75	<5,000
	04/30/03	4.87	602.91	1,500	<50	< 0.50	< 0.50	< 0.50	< 0.50	<75	<5,100
	08/21/03	14.54	593.24	$3,100^2$	160	< 0.50	0.60	1.1	4.0	<50	<5,000
	11/13/03	21.04	586.74	450	160	< 0.50	< 0.50	0.67	< 0.50	<75	<5,000
	03/15/04	7.13	600.65	500	57 ⁴	< 0.50	< 0.50	< 0.50	<1.0	8.4	<5,000
	05/19/04	10.77	597.01	640	72	< 0.50	< 0.50	1.7	2.9	6.9	<5,000
	08/11/04	18.00	589.78	1,300	69 ⁴	< 0.50	< 0.50	0.88	2.0	12	<5,000
	11/11/04	20.08	587.70	240	94 ⁴	< 0.50	0.99	2.0	2.5	<5.0	<5,000
	02/11/05	7.37	600.41	340	84 ⁴	< 0.50	0.87	1.5	<1.0	<5.0	<5,000

Table 1Groundwater Monitoring Data and Analytical Results

WELL ID/	DATE	DTW	GWE	TPHd	TPHg	В	T	E	Х	Total Lead	TOG
TOC*(ft.)		(ft.)	(msl)	$(\mu g/L)$	(μg/L)	(μg/L)	(μg/L)	(μg/L)	$(\mu g/L)$	$(\mu g/L)$	$(\mu g/L)$
608.56	05/19/05	7.73	600.83	91 _	170	<0.30	<0.30	< 0.50	< 0.50	2.2	NA
MW-2	08/16/05	10.55	598.01	910 ⁷	290	< 0.30	< 0.30	<0.50	< 0.50	56	<5,000
(Cont.)	11/16/05	18.95	589.61	<50	<50	< 0.30	< 0.30	<0.50	< 0.50	170	NA
	02/20/06	8.11	600.45	550	77	<0.50	<0.50	2.0	1.0	<50	NA
MW-3											
607.14	08/07/02 ¹	17.29	589.85	28,000	1,300 ²	< 0.50	< 0.50	7.8	< 0.50	360	5,300
	11/13/02	20.73	586.41	9,100	570	<5.0	<5.0	<5.0	<5.0	<75	5,400
	02/28/03	7.78	599.36	220	<50	< 0.50	< 0.50	< 0.50	< 0.50	<75	<5,000
	04/30/03	5.04	602.10	420	56	< 0.50	< 0.50	1.0	< 0.50	<75	<5,000
	08/21/03	14.45	592.69	460	71	1.6	< 0.50	< 0.50	1.1	<50	<5,000
	11/13/03	21.45	585.69	1,300	260	2.4	< 0.50	< 0.50	< 0.50	<75	<5,000
	03/15/04	7.38	599.76	360	87	0.71	< 0.50	< 0.50	<1.0	<5.0	<5,000
	05/19/04	10.90	596.24	430	110	< 0.50	0.74	0.99	<1.0	<5.0	<5,000
	08/11/04	17.88	589.26	1,200	140 ⁴	< 0.50	0.56	1.3	2.4	<5.0	<5,000
	11/11/04	20.30	586.84	1,900	310 ⁴	0.77	1.1	5.6	4.5	<5.0	<5,000
	02/11/05	7.64	599.50	230	<50	< 0.50	0.59	0.82	<1.0	<5.0	<5,000
607.88	05/19/05	6.31	601.57	<50	270	< 0.30	< 0.30	< 0.50	< 0.50	<2.0	NA
	08/16/05	12.13	595.75	370 ⁸	470	< 0.30	< 0.30	< 0.50	< 0.50	2.4	<5,000
	11/16/05	18.88	589.00	82	130	< 0.30	< 0.30	< 0.50	< 0.50	2.1	NA
	02/20/06	7.80	600.08	390	53	<0.50	<0.50	<0.50	<1.0	<50	NA
MW-4											
607.29	08/07/02 ¹	17.16	590.13	69	<50	<0.50	< 0.50	< 0.50	< 0.50	540	<5,000
	11/13/02	20.35	586.94	130	<50	<0.50	<0.50	<0.50	<0.50	<75	<5,000
	02/28/03	7.49	599.80	240	<50	<0.50	<0.50	<0.50	<0.50	<75	<5,000
	04/30/03	4.82	602.47	240	<50	< 0.50	< 0.50	<0.50	<0.50	<75	<5,100
	08/21/03	14.54	592.75	120 ²	<50	< 0.50	<0.50	<0.50	<0.50	<50	<5,000
	11/13/03	21.25	586.04	NS	NS	NS	NS	NS	NS	NS	NS

Table 1Groundwater Monitoring Data and Analytical Results

WELL ID/	DATE	DTW	GWE	TPHd	TPHg	В	Т	E	Х	Total Lead	TOG
TOC*(ft.)		(ft.)	(msl)	$(\mu g/L)$	$(\mu g/L)$	$(\mu g/L)$	$(\mu g/L)$	$(\mu g/L)$	$(\mu g/L)$	$(\mu g/L)$	$(\mu g/L)$
MW-4	03/15/04	7.02	600.27	<50	<50	< 0.50	< 0.50	< 0.50	<1.0	<5.0	<5,000
(Cont.)	05/19/04	10.60	596.69	<50	<50	< 0.50	<0.50	< 0.50	<1.0	<5.0	<5,000
	08/11/04	17.77	589.52	<50	<50	< 0.50	< 0.50	< 0.50	<1.0	<5.0	<5,000
	11/11/04	20.00	587.29	<50	<50	< 0.50	< 0.50	< 0.50	<1.0	<5.0	<5,000
	02/11/05	7.28	600.01	<50	<50	< 0.50	<0.50	< 0.50	<1.0	<5.0	<5,000
608.07	05/19/05	6.26	601.81	<50	<50	< 0.30	< 0.30	< 0.50	< 0.50	<2.0	NA
	08/16/05	11.88	596.19	210 ⁸	<50	< 0.30	< 0.30	< 0.50	< 0.50	3.0	<5,000
	11/16/05	18.88	589.19	120 ¹⁰	<50	< 0.30	< 0.30	< 0.50	< 0.50	18	NA
	02/20/06	7.34	600.73	<50	<50	<0.50	<0.50	<0.50	<1.0	<50	NA
MW-5											
607.64	08/07/02 ¹	17.33	590.31	4,100	210 ²	< 0.50	< 0.50	< 0.50	< 0.50	310	<5,000
	11/13/02	20.38	587.26	1,100	74	< 0.50	< 0.50	< 0.50	< 0.50	<75	<5,000
	02/28/03	7.39	600.25	6,300	<50	< 0.50	< 0.50	< 0.50	< 0.50	<75	11,000
	04/30/03	4.81	602.83	3,700	<50	< 0.50	< 0.50	< 0.50	< 0.50	<75	6,600
	08/21/03	14.44	593.20	880 ²	<50	< 0.50	< 0.50	< 0.50	< 0.50	<50	<5,000
	11/13/03	21.15	586.49	30,000	61	< 0.50	< 0.50	< 0.50	< 0.50	130	7,300
	03/15/04	6.92	600.72	1,600 ⁵	<50	< 0.50	< 0.50	< 0.50	<1.0	<5.0	<5,000
	05/19/04	10.58	597.06	<50	<50	< 0.50	< 0.50	0.53	1.0	<5.0	17,000
	08/11/04	17.92	589.72	8,800 ⁵	<50	< 0.50	< 0.50	< 0.50	<1.0	<5.0	<5,000
	11/11/04	20.02	587.62	4,800 ⁵	<50	< 0.50	< 0.50	< 0.50	<1.0	<5.0	<5,000
	02/11/05	7.15	600.49	<50	<50	< 0.50	< 0.50	< 0.50	<1.0	5.3	<5,000
608.40	05/19/05	6.16	602.24	<50	<50	< 0.30	< 0.30	< 0.50	< 0.50	<2.0	NA
	08/16/05	11.90	596.50	170 ⁸	<50	< 0.30	< 0.30	< 0.50	< 0.50	3.0	5,000
	11/16/05	18.90	589.50	<50	<50	< 0.30	< 0.30	< 0.50	< 0.50	<2.0	NA
	02/20/06	7.24	601.16	<50	<50	<0.50	<0.50	<0.50	<1.0	<50	NA
MW-6											
606.60	08/07/02 ¹	16.75	589.85	<50 ³	<50	<0.50	<0.50	<0.50	<0.50	260	<5,000

Table 1Groundwater Monitoring Data and Analytical Results

WELL ID/	DATE	DTW	GWE	TPHd	TPHg	В	Т	E	Х	Total Lead	TOG
TOC*(ft.)		(ft.)	(msl)	$(\mu g/L)$	$(\mu g/L)$	$(\mu g/L)$	$(\mu g/L)$	$(\mu g/L)$	$(\mu g/L)$	$(\mu g/L)$	$(\mu g/L)$
MW-6	11/13/02	20.57	586.03	<50	<50	< 0.50	<0.50	< 0.50	< 0.50	<75	<5,000
(Cont.)	02/28/03	7.10	599.50	<50	<50	< 0.50	< 0.50	< 0.50	< 0.50	<75	<5,000
	04/30/03	4.70	601.90	72	<50	< 0.50	< 0.50	<0.50	< 0.50	<75	<5,200
	08/21/03	13.88	592.72	<50	<50	< 0.50	< 0.50	<0.50	< 0.50	<50	<5,000
	11/13/03	21.00	585.60	230	<50	< 0.50	< 0.50	<0.50	< 0.50	190	<5,000
	03/15/04	6.66	599.94	<50	<50	< 0.50	< 0.50	< 0.50	<1.0	<5.0	<5,000
	05/19/04	10.15	596.45	<50	<50	< 0.50	0.56	0.73	2.0	<5.0	<5,000
	08/11/04	17.32	589.28	<50	<50	< 0.50	< 0.50	< 0.50	<1.0	<5.0	<5,000
	11/11/04	19.72	586.88	<50	<50	< 0.50	< 0.50	< 0.50	<1.0	8.3	<5,000
	02/11/05	6.94	599.66	<50	<50	< 0.50	< 0.50	< 0.50	<1.0	<5.0	<5,000
607.36	05/19/05	5.93	601.43	<50	<50	< 0.30	< 0.30	< 0.50	< 0.50	13	NA
	08/16/05	11.45	595.91	<120 ⁹	<50	< 0.30	< 0.30	< 0.50	< 0.50	8.8	<5,000
	11/16/05	18.64	588.72	<50	<50	< 0.30	< 0.30	< 0.50	< 0.50	7.4	NA
	02/20/06	7.11	600.25	<50	<50	<0.50	<0.50	<0.50	<1.0	<50	NA
5.63.67 											
MW-7 607.29	08/07/02 ¹	15.50	591.79	56	<50	<0.50	<0.50	<0.50	<0.50	<75	<5,000
007.29	11/13/02	16.58	590.71	<50	<50 <50	<0.50	< 0.50	< 0.50	<0.50	<75	<5,000 <5,000
	02/28/03	6.93	600.36	66	<50 <50	<0.50	< 0.50	< 0.50	<0.50	<75	<5,000 <5,000
	04/30/03	3.77	603.52	64	<50 <50	<0.50	< 0.50	< 0.50	<0.50	<75	<5,000 <5,200
	08/21/03	13.39	593.90	<50	<50	<0.50	< 0.50	< 0.50	<0.50	<50	<5,200 <5,000
	11/13/03	19.60	587.69	<50	<50	<0.50	<0.50	< 0.50	<0.50	<75	<5,000 <5,000
	03/15/04	6.36	600.93	<50 <50	<50 <50	<0.50	< 0.50	< 0.50	<1.0	<5.0	<5,000 <5,000
	05/19/04	10.10	597.19	<50 <50	<50	<0.50	<0.50	< 0.50	<1.0	<5.0 <5.0	<5,000 <5,000
	08/11/04	16.18	597.19	<50 <50		<0.50	< 0.50	< 0.50	<1.0	<5.0 <5.0	<5,000 <5,000
	11/11/04	17.05	591.11	<50 <50	<50 <50	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	<1.0 <1.0	<5.0 <5.0	<5,000 <5,000
	02/11/05	6.72		<50 <50	<50 <50	<0.50 <0.50	<0.50	<0.50 <0.50	<1.0 <1.0	<5.0 <5.0	
609.07			600.57								<5,000
608.07	05/19/05	5.54	602.53	<50 420 ⁸	<50	< 0.30	<0.30	< 0.50	< 0.50	<2.0	NA -5,000
	08/16/05	11.30	596.77	420	<50	< 0.30	< 0.30	<0.50	<0.50	<2.0	<5,000

Table 1Groundwater Monitoring Data and Analytical Results

WELL ID/	DATE	DTW	GWE	TPHd	TPHg	В	T	E	Х	Total Lead	TOG
TOC*(ft.)		(ft.)	(msl)	$(\mu g/L)$	$(\mu g/L)$	$(\mu g/L)$	$(\mu g/L)$	$(\mu g/L)$	$(\mu g/L)$	$(\mu g/L)$	$(\mu g/L)$
MW-7	11/16/05	16.70	591.37	<50	<50	< 0.30	< 0.30	< 0.50	< 0.50	<2.0	NA
(Cont.)	02/20/06	6.96	601.11	<50	<50	<0.50	<0.50	<0.50	<1.0	<50	NA
MW-8											
606.53	08/07/02 ¹	16.30	590.23	< 50 ³	<50	< 0.50	< 0.50	< 0.50	< 0.50	190	<5,000
	11/13/02	20.15	586.38	<50	<50	< 0.50	< 0.50	< 0.50	< 0.50	<75	<5,000
	02/28/03	6.18	600.35	<50	<50	< 0.50	< 0.50	< 0.50	< 0.50	<75	<5,000
	04/30/03	3.98	602.55	59	<50	< 0.50	< 0.50	< 0.50	< 0.50	<75	<5,000
	08/21/03	13.33	593.20	<50	<50	< 0.50	0.56	< 0.50	< 0.50	<50	<5,000
	11/13/03	20.60	585.93	140	<50	< 0.50	< 0.50	< 0.50	< 0.50	<75	<5,000
	03/15/04	5.72	600.81	<50	<50	< 0.50	< 0.50	< 0.50	< 0.50	<5.0	<5,000
	05/19/04	9.40	597.13	<50	<50	< 0.50	< 0.50	0.66	1.9	<5.0	<5,000
	08/11/04	16.85	589.68	<50	<50	< 0.50	< 0.50	< 0.50	<1.0	<5.0	<5,000
	11/11/04	19.07	587.46	<50	<50	< 0.50	< 0.50	< 0.50	<1.0	<5.0	<5,000
	02/11/05	6.03	600.50	<50	<50	< 0.50	< 0.50	< 0.50	<1.0	<5.0	<5,000
607.30	05/19/05	5.04	602.26	<50	<50	< 0.30	< 0.30	< 0.50	< 0.50	4.9	NA
	08/16/05	10.73	596.57	140 ⁸	<50	< 0.30	< 0.30	< 0.50	< 0.50	7.6	<5,000
	11/16/05	17.90	589.40	<50	<50	< 0.30	< 0.30	< 0.50	< 0.50	11	NA
	02/20/06	6.18	601.12	<50	<50	<0.50	<0.50	<0.50	<1.0	<50	NA
MW-9	08/21/03 ¹	14.25	592.42	<50	<50	< 0.50	< 0.50	< 0.50	< 0.50	<50	<5,000
606.67	11/13/03	21.45	585.22	55	<50	< 0.50	< 0.50	< 0.50	< 0.50	79	<5,000
	03/15/04	7.50	599.17	<50	<50	< 0.50	< 0.50	< 0.50	< 0.50	<5.0	<5,000
	05/19/04	10.78	595.89	<50	<50	0.94	0.77	0.95	3.2	<5.0	<5,000
	08/11/04	17.67	589.00	<50	<50	< 0.50	< 0.50	< 0.50	<1.0	<5.0	<5,000
	11/11/04	20.23	586.44	<50	<50	< 0.50	< 0.50	< 0.50	<1.0	<5.0	<5,000
	02/11/05	7.77	598.90	<50	<50	< 0.50	< 0.50	< 0.50	< 0.50	<5.0	<5,000
607.44	05/19/05	6.65	600.79	<50	<50	< 0.30	< 0.30	< 0.50	< 0.50	7.4	
	08/16/05	12.00	595.44	480 ⁸	<50	< 0.30	< 0.30	< 0.50	< 0.50	9.8	<5,000

Table 1Groundwater Monitoring Data and Analytical Results

WELL ID/ TOC*(ft.)	DATE	DTW (ft.)	GWE (msl)	TPHd $(\mu g/L)$	TPHg (μg/L)	Β (μg/L)	Τ (μg/L)	Ε (μg/L)	Χ (μg/L)	Total Lead (μg/L)	ΤΟG (μg/L)
MW-9	11/16/05	18.82	588.62	<50	<50	<0.30	<0.30	<0.50	<0.50	11	NA
(Cont.)	02/20/06	7.92	599.52	<50	<50	<0.50	<0.50	<0.50	<1.0	<50	NA
MW-12											
607.33	NOT MONITO	ORED/NOT	SAMPLED								
Trip Blank											
QA	08/07/02			NA	<50	< 0.50	< 0.50	< 0.50	< 0.50	NA	NA
	11/13/02			NA	<50	< 0.50	< 0.50	< 0.50	< 0.50	NA	NA
	02/28/03			NA	<50	< 0.50	< 0.50	< 0.50	< 0.50	NA	NA
	04/30/03			NA	<50	< 0.50	< 0.50	< 0.50	< 0.50	NA	NA
	08/21/03			NA	<50	< 0.50	< 0.50	< 0.50	< 0.50	NA	NA
	11/13/03			NA	<50	< 0.50	< 0.50	< 0.50	< 0.50	NA	NA
	05/19/04			NA	<50	< 0.50	< 0.50	< 0.50	< 0.50	NA	NA
	08/11/04			NA	<50	< 0.50	< 0.50	< 0.50	<1.0	NA	NA
	11/11/04			NA	<50	< 0.50	< 0.50	< 0.50	<1.0	NA	NA
	02/11/05			NA	<50	< 0.50	< 0.50	< 0.50	<1.0	NA	NA
	05/19/05			NA	<50	< 0.30	< 0.30	< 0.50	< 0.50	NA	NA
	08/16/05			NA	<50	< 0.30	< 0.30	< 0.50	< 0.50	NA	NA
	11/16/05			NA	<50	< 0.30	< 0.30	< 0.50	< 0.50	NA	NA
	02/20/06			NA	<50	<0.50	<0.50	<0.50	<1.0	NA	NA

Table 1

Groundwater Monitoring Data and Analytical Results

Former Unocal Bulk Plant No. 0813 122 Leslie Street Ukiah, California

EXPLANATIONS:

TOC = Top of Casing TPHg = Total Petroleum Hydrocarbons as Gasoline (ppb) = Parts per billion

DTW = Depth to Water B = Benzene -- = Not Measured/Not Calculated (ft.) = Feet T = Toluene QA = Quality Assurance/Trip Blank

GWE = Groundwater Elevation E = Ethylbenzene mg/L = Milligrams per liter (msl) = Mean Sea Level X = Xylenes $\mu g/L = Microgram per liter$

TPHd = Total Petroleum Hydrocarbons as Diesel TOG = Total Oil and Grease

NS Not Sampled; unable to access well due to parked car NA = Not Analyzed

- * TOC elevations were re-surveyed on April 13, 2005 by Morrow Surveying. Historically, TOC elevation for MW-9 was surveyed September 4, 2003, by Morrow Surveying, Inc. referencing the previous benchmark. TOC elevations are referenced to msl, and were surveyed June 24, 2002, by Morrow Surveying, Inc. The benchmark used for the survey was a City of Ukiah benchmark.
- Well development performed.
- Laboratory report indicates a hydrocarbon pattern is present in the requested quantitation range but does not resemble the pattern of the requested fuel.
- Laboratory report indicates no sample remained for re-extraction.
- ⁴ Although sample contains compounds in the retention time range associated gasoline, the chromatogram was not consistent with the expected chromatographic pattern or "fingerprint". However, the reported concentration is based on gasoline.
- Although sample contains compounds in the retention time range associated diesel, the chromatogram was not consistent with the expected chromatographic pattern or "fingerprint". However, the reported concentration is based on diesel.
- The sample was diluted due to the presence of high levels of non-target analytes resulting in elevated reporting limits.
- Analysis of this sample indicates the presence of hydrocarbons lower in molecular weight than diesel
- The sample chromatographic pattern does not resemble the diesel standard used for calibration
- The method blank contains analyte at a concentration above the MRL; sample reporting limits were raised as necessary.
- The sample chromatogram contains resolved peaks within the diesel range that do not resemble diesel.

Table 2
Ozone Sparging System Monitoring
Data and Analytical Results for MW-1 and MW-2

WELL ID/	DATE	DTW	GWE	TPHd	TPHg	В	T	E	Х	Cr+6	pН	Molybdenum	Selenium	Vanadium	Bromate	Bromide
TOC(ft.)		(ft.)	(msl)	$(\mu g/L)$	$(\mu g/L)$	$(\mu g/L)$	$(\mu g/L)$	$(\mu g/L)$	$(\mu g/L)$	$(\mu g/L)$	pH Units	$(\mu g/L)$				
MW-1																
	4/14/05*	NT	NT	4,700	1,100	ND	ND	ND	ND	ND	6.5	ND	ND	ND	ND	120
608.62	4/20/05*	NT	NT	260	160	ND	ND	ND	ND	ND	6.8	ND	ND	ND	ND	57
	5/09/05*	NT	NT	97	540	ND	ND	ND	ND	ND	7.1	ND	ND	ND	ND	39
	5/19/05	6.04	602.58	4,500	1,100	ND	ND	ND	ND	ND	6.6	ND	ND	ND	NA	NA
	6/17/05*	NT	NT	180	220	ND	ND	ND	ND	ND	7.0	ND	ND	ND	ND	31
	8/16/05	11.80	596.82	83,000	2,000	0.39	< 0.30	< 0.50	< 0.50	<10	6.7	<20	<5	<10	<5	6.5
	9/19/05	15.20	593.42	3,600	1,200	0.35	< 0.30	<0.5	< 0.50	<1.0	6.3	<20	<5.0	<10	<5	83
	10/18/05	17.70	590.92	8,000	2,100	0.45	< 0.30	<0.5	< 0.50	<1.0	7.1	<20	<5.0	<10	<5	22
	11/16/05	17.30	591.32	10,000	360	0.41	< 0.30	< 0.50	< 0.50	<1.0	6.8	<20	<5.0	<10	<5	72
	12/15/05	12.90	595.72	11,000	1,000	0.50	< 0.30	< 0.50	< 0.50	<1.0	6.2	<20	<5.0	<10	<5	55
	1/26/06	5.80	602.82	120,000	860	< 0.50	< 0.50	4.9	4.3	<1.0	6.60	<20	<5.0	<20	<20	<100
	2/20/06	7.24	601.38	13,000	1400 ¹	<0.50	4.4	7.6	5.6	<1.0	6.41	<20	<5.0	<20	<20	<100
MW-2																
	4/14/05*	NT	NT	79	ND	ND	ND	ND	ND	ND	6.4	ND	ND	ND	ND	250
608.56	4/20/05*	NT	NT	2,500	290	ND	ND	ND	ND	ND	6.5	ND	ND	ND	ND	69
	5/09/05*	NT	NT	310	190	ND	ND	ND	ND	ND	6.8	ND	ND	2.4	ND	85
	5/19/05	7.73	600.83	91	170	ND	ND	ND	ND	ND	6.7	ND	ND	1.6	NA	NA
	6/17/05*	NT	NT	260	ND	ND	ND	ND	ND	0.1	6.8	ND	ND	ND	ND	49
	8/16/05	10.55	598.01	910	290	< 0.30	< 0.30	< 0.50	< 0.50	11	6.9	<20	<5	27	<5	81
	9/19/05	16.00	592.56	120	150	< 0.3	< 0.30	< 0.50	< 0.50	<1.0	6.5	<20	<5.0	<10	<5	79
	10/18/05	19.54	589.02	<50	<50	< 0.3	< 0.30	< 0.50	< 0.50	<1.0	7.3	<20	<5.0	<10	16	23
	11/16/05	18.95	589.61	<50	<50	< 0.30	< 0.30	< 0.50	< 0.50	<1.0	7.2	<20	<5.0	<10	<5	69
	12/15/05	12.80	595.76	<50	140	0.37	0.33	1.1	2.3	<1.0	6.7	<20	<5.0	<10	<5	61
	1/26/06	6.40	602.16	720	91	< 0.50	< 0.50	2.1	1.0	<1.0	6.74	<20	<5.0	<20	<20	150
	2/20/06	8.11	600.45	550	77	<0.50	<0.50	2.0	1.0	<1.0	6.64	<20	<5.0	<20	<20	<100

EXPLANATIONS:

TPHd = Total Petroleum Hydrocarbons as Diesel X = Xylenes (total) TOC = Top of Casing

TPHg = Total Petroleum Hydrocarbons as Gasoline Cr+6 = Hexavalent chromium ft = feet above mean sea level

B = Benzene ND = Non-detect DTW = Depth to Water

T = Toluene NA = Not analyzed GWE = Groundwater Elevation

E = Ethylbenzene µg/L = micrograms per liter -- = Not Measured/Not Calculated

^{* =} Samples collected as part of the monthly ozone system monitoring & sampling were collected as grab samples. All samples collected as part of the quarterly groundwater monitoring program and monthly samples collected after 8/16/05 were collected following a three-casing-volume purge.

¹ = Although sample contains compounds in the retention time range associated gasoline, the chromatogram was not consistent with the expected chromatographic pattern or "fingerprint". However, the reported concentration is based on gasoline.

ATTACHMENT A

FIELD METHODS AND PROCEDURES

FIELD METHODS AND PROCEDURES Unocal Site No. 813, 122 Leslie Street, Ukiah, CA (Site) ENSR Project No. 06940-264

The following section describes field procedures that are to be used by ENSR personnel in the performance and quality management of the field work and data evaluation tasks involved with this project.

1. HEALTH AND SAFETY PLAN

The performance of fieldwork and other project services by ENSR and ENSR's subcontractors will be conducted according to guidelines established in the most current, Site-specific Health And Safety Plan (HASP). The HASP describes the hazards that may be encountered in the field and specifies protective equipment, work procedures, and emergency information. A copy of the HASP is maintained at the Site. Prior to performing work at the Site, personnel will have read the HASP, and sign that they have read the HASP and will perform work at the Site in accordance with the HASP.

2. DECONTAMINATION

Decontamination of equipment brought to and used at the Site is performed in accordance with ENSR SOP No. 7600. The soap solution and rinse water used for decontamination are collected and properly disposed of as described in Section 7.

3. GROUNDWATER DEPTH ASSESSMENT

Initially, all wells for groundwater depth assessment are opened and allowed to equilibrate to atmospheric pressure. Measuring the thickness of liquid-phase hydrocarbons (LPH), if present, and the depth to groundwater are performed in accordance with the applicable sections of ENSR SOP No. 7130. The water level measurement probe is subjectively analyzed for LPH sheen after each measurement.

4. SUBJECTIVE ANALYSIS OF GROUNDWATER

Prior to purging for groundwater monitoring, a groundwater sample is collected from the monitoring well for subjective assessment. The sample is retrieved by gently lowering a clean, disposable bailer to approximately one-half the bailer length past the air/liquid interface. The bailer is then retrieved and the sample contained within the bailer is examined for floating LPH and the appearance of a LPH sheen.

5. GROUNDWATER SAMPLE COLLECTION

5.1 Purged Groundwater Sample

The purging and collection of a groundwater sample are performed in accordance with ENSR SOP No. 7130. Well purging completion standards include minimum purge volumes, and the stabilization of specific groundwater parameters prior to sample collection. Typical groundwater parameters used to measure stability are electrical conductivity, pH, and temperature as described in ENSR SOP Nos. 7124, 7121, and 7123, respectively. Groundwater parameter readings are obtained at regular intervals during the purging process (no less than once per case volume).

5.2 Dissolved Oxygen Measurement

Dissolved oxygen (D.O.) readings are collected in accordance with ENSR SOP No. 7122 using HORIBA meters (e.g. HORIBA Model U-22 or equivalent D.O. meter). These meters are equipped with a stirring device that enables the collection of in-situ readings.

5.3 Oxidation Reduction Potential (Redox Potential) Measurement

Redox potential readings are obtained with HORIBA meters (e.g. HORIBA Models U-22 or equivalent ORP meter). The meter is cleaned between wells as described above. The meter is calibrated at the start of each day according to the manufacturer's instruction manual.

5.4 Grab Groundwater Sample Collection

A grab groundwater sample is collected by lowering a disposable bailer to sufficient depth that the length of the bailer is below the water table.

6. PACKAGING AND SHIPMENT OF SAMPLES

Soil, groundwater, and/or gas samples from field work are packaged and shipped in accordance with ENSR SOP No. 7510.

7. INVESTIGATION-DERIVED WASTE MANAGEMENT

The purge water, decontamination residuals, and aqueous-based, liquid wastes from field work are placed in 55-gallon drums and temporarily stored on-site pending evaluation of disposal options. Solid wastes, such as disposable bailers and paper wipes, generated during field work are packaged in an appropriate container and separately from liquid wastes. Final disposal is performed consistent with accepted regulatory requirements and consistent with requirements specified by Unocal.

8. QUALITY CONTROL

Quality control samples are collected and submitted for analysis. The quality control samples may include field blanks, rinsate blanks, duplicate sample(s), and matrix spike/matrix spike duplicate samples as described in Section 5.0 of ENSR SOP No. 7130.

9. DOCUMENTATION

Documentation of field work is performed consistent with Section 6.0 of ENSR SOP No. 7130 and ENSR SOP No. 7515.

ATTACHMENT B

GROUNDWATER SAMPLING INFORMATION DATA

GROUNDWATER/LIQUID LEVEL DATA (measurements in feet below TOC)

Site Address: 122 Leslie St., Ukiah, CA

ENSR No. 06940-264-100

Unocal No. 813

Date:

Recorded by

									•	
Sampling Order/ Well No.	Time Opened	CGI	PID	O2	Time Measured	Depth to Gr. Water	Measured Total Depth	1 ' 1	Product Thickness	Comments (TOC/TOB) (product skimmer in well)
MW-9	0925		0.0		0927	7.92	24.61			TAKE D.O. READING
MW-6	०२७०		0.0		0932	7.11	23.41		i /	
MW-8	0934		0.0	1	0936	6.18	24.79			
MW-7	0941		0.4	5	0943	6.96	24.58			
MW-4	0947		0.0	7	0950	13H	25.91			
MW-3	0953	$\langle \ \ \rangle$	0.0		0956	780	25.91			
MW-2	0958	,	6.4	[1001	-7.28	24.29			
MW-5	1004	i	0.6		1007	7:24	23.39		/	
MW-1	1012		0.3		1015	7.24	24.11			
MW-12	NA	NA	NA	NA	NA	NA	NA			DO NOT SAMPLE

Notes:

Water measurement and sampling order listed above.

	122 Leslie St., U 06940-264-100	Jkian, CA		Well 🗓	Piezometer				
Unocal No.	813				- Commence of the Commence of				
Well Purging:	0/26	6		Field Tech(s):	DR			****	
Date Purged:_ Purge Method	: Disposable bail	と ler/other DC	- POWP	Weather Conditi	ons: (SOZ)	> + 500N	\ (
Caning Materi	مار			Volume	3/4" = 0.02 1" = 0.0				
Casing Materia		pvc		Factor (VF)	4" = .66 5" = 1.0	2 6" = 1.50 12" = 5.80	0] , ,	
Well Diameter	•	2.00	in,			127.5		- / /	
Total Depth:		24.61	ft from TOC	80% Recovery fr	rom TOC: = Total	Depth - (Water Colu	mn X 8\ =	1104	
Depth to Wate	r: 7,5	72- 24.01	ft from TOC					<u> </u>	
Water Column	7		ft.						
Water Column			• * **	m	6	7.06	_ ,	molecular	
Water Column	r voidille.	36 /	gal (WC X VF)	Depth to water a	nter recovery:	7,00	Time:	<u> </u>	
Time	Volume	DO	Redox	Temperature	Charific		T	0 - 1 101 11	
	Removed	20		remperature	Specific	pН	Turbidity	Color/Clarity	(
			Potential (ORP)		Conductivity				
	(gal)	(mg/L)	(mVolts)	(°Ç)	(uS/cm)		(NTUs)		
1025	0.50	5.42	291	16.1	741	5:24	3-77		
1031	1 5 50	27.21	200	163	2x \	6410	うぐむ	1	

Time	Volume Removed (gal)	DO (ma/l.)	Redox Potential (ORP) (mVolts)	Temperature	Specific Conductivity	pН	Turbidity	Color/Clarity	Other	Other
		(mg/L)	·	(°C)	(uS/cm)		(NTUs)			
10.0	0 0,50	1.15	291	(6.1	74.	5:24	57/		-19	
1031	1 5,50	3.21	280	16.3	23'. \	5.46	354			
1036	2 6-50	3.02	268	(b -)	26.6	5.43	275			
1041	3 9.50	3.14	7'61	16.0	24.5	5.42	171			
* "	4	,			•					

Sample Collection: /20/00/
Date Sampled: 2/20/00/
Sampling Method: Disposable Bailer / Other Property Sample Type: Grab

Sample ID	# of containers	Container Type	Preservation	Analysis	+ 1 × 1	Time
W -9	3	40-mL VOA	Ice/HCI	TPHg / BTEX (8260)		10050
144 - 191	1	1-L Amber	None	TRPH (1664)		
NW -9	1	250-mL Amber	None	TPHd (8015M)		
100 -CT	1	500-mL Poly	HNO3	Total Lead (6010)		
*						

Comments: 451 550A to pur three = 5.8 mil *DIFFICULTO FIND - COHNERD W/ (" of My DIET

Signature:

Date: 2/20/00

GROUNDWATER SAMPLING DATA SHEET Site Address: 122 Leslie St., Ukiah, CA	Well/Piezo ID: MW-6			
ENSR No. 06940-264-100 Unocal No. 813	Well ☑ Piezometer ☐			
Well Purging: Date Purged: Purge Method: Disposable bailer/other Casing Material: Well Diameter: Total Depth: Depth to Water: Water Column: Water Column Volume: Date Purged: 2.00 in. 2.00 in. 23.41 ft from TOC ft from TOC ft. gal (WC X VF)	Volume 3/4" = 0.02 1" = 0.04 2 Factor (VF) 4" = .66 5" = 1.02 6 80% Recovery from TOC: = Total Dep	"=1.50 12"=5.80 th - (Water Column X .8) =	1037	
Time Volume DO Redox Removed Potential (OR (gal) (mg/L) (mVolts)	Temperature Specific P) Conductivity (°C) (uS/cm)	pH Turbidity (NTŲs)	Color/Clarity Other	r Other
1100 0 05 5.92 231	15.9 19.7	5.86 14	II MUSTAPO	
1105 1 3,5 4.19 247	15.0 17.8	5.64 53.6	TOR 1	
110 265 3.28 250	14.8 17.4	5.51 14.8	CLR UT WARE	MD
115 3 9.5 3.13 2.51	14.7 17.5	348 6.5	T 18	KI
Sample Collection: Date Sampled: 2/20/06 Sampling Method: Disposable Bailer / Other Date Sample Type: Grab	w?			

	# of containers	Container Type	Preservation	Analysis	Time
<u> </u>	3	40-mL VOA	Ice/HCI	TPHg / BTEX (8260)	1175
W-6	1	1-L Amber	None	TRPH (1664)	
mo-6	1	250-mL Amber	None	TPHd (8015M)	
<u> </u>	1	500-mL Poly	HNO3	Total Lead (6010)	

Comments: ** Dup 196 Do = 6.8 pg/c (*\51.50A)

Signature: Date: 1/266

	ATER SAMPLING		ET .	Well/Piezo ID:	MW-8					
Site Address ENSR No.	: 122 Leslie St., L 06940-264-100	lkiah, CA		Well X	Piezometer					
Unocal No.	813			Weii [X]	Fiezometer []					
Well Purging	g: / /	p.		Field Tech(s):	SINC					
Date Purged:	2/20/6	26	,	, ,			·	****		
Purge Metho	d: Disposable bail	er/other	<u> </u>		ions: COW+	CLEEDIC	 .	-		
Casing Mater	riol	シ と		Volume	3/4" = 0.02 1" = 0.04					
Well Diamete		2.00	Lin	Factor (VF)		6" = 1.50 12" = 5.		J /		
Total Depth:			ft from TOC	80% Recovery f	rom TOC: = Total D	1179 - (4: enth - (Water Col	75 umn x 8\=	'.°Co'		
Depth to Wat		<u>.18</u>	ft from TOC					ASSAIAIA ASSAIA		
Water Colum		-61	ft.	Depth to water a	ifter recovery:	6.21	Time:	210		
Water Colum	nn Volume: <u>* 2</u>	. Q Q 2	gal (WC X VF)							
Time	Volume	DO	Redox	Temperature	Specific	ρН	Turbidity	Color/Clarity	Other	
	Removed	((I.)	Potential (ORP)	(2.2)	Conductivity					
11.40	(gal)	(mg/L)	(mVolts)	(°C)	(uS/cm)		(NTUs)			
1144	0 0.5	6.12	475	1000	18.1	5.11	386	प्रक्रम	-	4
1148	2 6.5	5.03	150	15.3	17.8	5:53	109	ا یو ا		4
134	3 9.5				<u> </u>	5.44	72	OB		4
109	 3 	4.43	182	15.2	7.7	5.42	<u> 68 </u>	962		4
	4									4
										-
144			3							\dagger
		/	3			**************************************		<u> </u>		Ł
Sample Colle Date Sample		06								
Sampling Me	ethod: Disposable		DC Punf	>						
Sample Type	e: Grab									
Sample ID	# of containers	Cont	ainer Type	Preservation			Analysis			
1/w-18	3		-mL VOA	Ice/HCI	TPHa / BTEX (826	Λ\	Alialysis			+

	# of containers	Container Type	Preservation	Analysis	Time
1/w-1/6	3	40-mL VOA	lce/HCl	TPHg / BTEX (8260)	1215
W-76	1	1-L Amber	None	TRPH (1664)	
W-80	1	250-mL Amber	None	TPHd (8015M)	
<u>(hu - 90 </u>	1	500-mL Poly	HNO3	Total Lead (6010)	

Other

Site Address ENSR No. Unocal No. Well Purgin Date Purged	d: 1/20/00 pod: Disposable bail erial:	Jkiah, CA er/other 4.00	ZPUWP_	Well X Field Tech(s): Weather Conditi Volume Factor (VF)	3/4" = 0.02 1" = 0.04 4" = .66 5" = 1.02 rom TOC: = Total D	6" = 1.50 12" = 5.80	(O	- 10.42 368	*	
	against a second	<u> </u>	_ gar(110 X 11)	Dopar to water a	ster recovery	3° 2 C	(inie:]			
Time	Volume Removed	DO	Redox	Temperature	Specific	pН	Turbidity	Color/Clarity	Other	Other
	(gal)	(mg/L)	Potential (ORP) (mVolts)	(°C)	Conductivity		/4.1995 / ·			
1230	6.50	4.23	1-2/2	16.8	(uS/cm)	[(NTUs)	T 7 5 20	·····	T
1240	112.00	9,51		T	18.1	5.26	75.5	<u> </u>		ļ
			226	17.2	18.0	<u> </u>	79.0	CUR		
1250		3.56	229	16.8	17.0	5-27	47.8	CLR		
1700	336.00	3.94	230'	16.7	17.8	605	64.3	ae		
	4			· ·			,			

			9.00							
Sample Coll Date Sample Sampling Me Sample Type	ed: 170/6 ethod: Disposable	DG Bailer / Other	De Pens	<u> </u>						
Sample ID	# of containers	Cont	tainer Type	Preservation			Analysis			Time
Nw-7	3		-mL VOA	Ice/HCI	TPHg / BTEX (826					1720
11111	1	***************************************	1 Ambor	Niene	TDDU (4004)	-1				1 // 2

Sample ID	# of containers	Container Type	Preservation	Analysis	Time
NW-1	3	40-mL VOA	Ice/HCI	TPHg / BTEX (8260)	120
WW-7	1	1-L Amber	None	TRPH (1664)	
W -7_	1	250-mL Amber	None	TPHd (8015M)	
<u> </u>	1	500-mL Poly	HNO3	Total Lead (6010)	
	§	_	1	***************************************	

700

Signature: Date: 2 20

GROUNDWATER SAMPLING DATA SHEET Site Address: 122 Leslie St., Ukiah, CA ENSR No. 06940-264-100 Unocal No. 813				Well/Piezo ID:	MW-4 Piezometer					
Well Purging: Date Purged: 2/2/20 Purge Method: Disposable bailer/other Technology Casing Material: Well Diameter: 2.00 in. Total Depth: 25.91 ft from TOC Depth to Water: ft from TOC Water Column: ft.				Volume Factor (VF)	Veather Conditions:					
Water Column			gal (WC X VF)	Depth to water a	after recovery:	7.34	Time:	352		
Time	Volume Removed (gal)	DO (mg/L)	Redox Potential (ORP) (mVolts)	Temperature (°C)	Specific Conductivity (uS/cm)	рН	Turbidity (NTUs)	Color/Clarity	Other	Other
1329	0 0.5	742	2-6 l	<u>। डि</u> रु	21.7	5.(8	954	Cases		
1343	1 3 . 5	0.43	(90 (0 6	18.4	24.0	5.12	375	CLR		
1347	3 9.5	10.70) 0 6 186	1 (8-1	25.8	3.14	276	Takt		
	4		· ·							
Sample Colle Date Sampled Sampling Meti	ction: : 2/2 hod: Disposable	OV Bailer / Other	De Purp)						

	# of containers	Container Type	Preservation	Analysis	Time
Nw-4	3	40-mL VOA	Ice/HCI	TPHg / BTEX (8260)	1758
mo - H	1	1-L Amber	None	TRPH (1664)	
W-4-	1	250-mL Amber	None	TPHd (8015M)	
WW-4	1	500-mL Poly	HNO3	Total Lead (6010)	
·····					

nts: DWN How DO = 491 well (451 50A)	Comments:
ire.	Signature:

	GROUNDWATER SAMPLING DATA SHEET				MW-3						
Site Address	: 122 Leslie St., U	Jkiah, CA									
ENSR No.	06940-264-100			Well ∑	Piezometer						
Unocal No.	813				The second second						
	,,,	r			Jn0						
	Well Purging:				Field Tech(s):						
Date Purged: 470/06											
Purge Metho	d: Disposable bail	er/other	x Pur	Weather Condit	ions: Coro	+(1)					
	വ	A		Volume	3/4" = 0.02 1" = 0.04			1			
Casing Mater			_	Factor (VF)	4" = .66 5" = 1.02	6" = 1.50 12" = 5.80					
Well Diamete	er:	2.00) in.			13.0	9 .7	. (
Total Depth:		24.29	ft from TOC	80% Recovery f	from TOC: = Total D	epth - (Water Colun		10			
Depth to Wat		<u> </u>	ft from TOC	·		, ,	· - /				
Water Colum	nn: <u> </u>	<u>.4a </u>	ft.								
Water Colum	าก Volume: 💹 🛂	04	gal (WC X VF)	Depth to water a	after recovery:	792	Time: 14	28			
				·							
Time	Volume	DO	Redox	Temperature	Specific	pН	Turbidity	Color/Clarity	Other	Other	
	Removed		Potential (ORP)		Conductivity	•	•	•			
*	(gal)	(mg/L)	(mVolts)	(°C)	(uS/cm)		(NTUs)				
1ºt10	0 0.5	4.71	70	17.9	46.2	4.7.3	233	GREW			
1414	1 37.5	3.24	49	19.4	46.8	5.28	248	242 I			
1418	2 10·C	3.00	34	118.2	47.1	5,22	217	1			
1425	3 9.5	3.01	en	18.2	46.5		142	<u> </u>			
- 342	- 1 · · · · · · · · · · · · · · · · · ·	2:01		18.5	76.2	6.27	142	Cir-			
	4										
	_	are .		······································		.1				<u> </u>	
Sample Coll		[
Date Sample		<u> </u>	- 1 0								
Sampling Me	thod: Disposable l	Bailer / Other	D PW								
Sample Type											
	# of containers	Cont	ainer Type	Preservation			Analysis			Time	
Way-77	3	40-	-mL VOA	Ice/HCI	TPHg / BTEX (826					1435	
	1	<u> </u>			1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	.,				111-7	

Sample ID	# of containers	Container Type	Preservation	Analysis	Time
Vay-77	3	40-mL VOA	Ice/HCI	TPHg / BTEX (8260)	1435
Mu -3	1	1-L Amber	Ice	TRPH (1664)	
W - 3	1	250-mL Amber	Ice	TPHd (8015M)	
WW-3	11	500-mL Poly	HNO3	Total Lead (6010)	

Comments: Dur Hace to = 4,9 mg (49.90A)

Date: 420/06

GROUNDWATER	CAMDI	INC DATA	CHEET
CAPER SELECTION OF THE STAFF	- AND P	1D4 (* 3 1 CA 1 CA	~ m m m 1

Site Address: 122 Leslie St., Ukiah, CA

ENSR No. 06940-264-100

Unocal No. 813

Well Purging: 2 Date Purged:

Purge Method: Disposable bailer/other Purt

Casing Material:

Well Diameter:

3 Q.S

Total Depth: Depth to Water:

1504

25.91 ft from TOC ft from TOC

2.00 in.

Water Column:

Water Column Volume:

ft. gal (WC X VF)

17A

Well/Piezo ID: MW-2

Well X

Piezometer

Weather Conditions:

Volume 3/4" = 0.02 1" = 0.04 2" = .16 3" = .38 Factor (VF)

5" = 1.02 6" = 1.50 12" = 5.80

80% Recovery from TOC: = Total Depth - (Water Column X .8) =

Depth to water after recovery:

284

Time Volume DO Redox **Temperature** Specific рΗ Turbidity Color/Clarity Other Other Removed Potential (ORP) Conductivity (mVolts) (gal) (°C) (uS/cm) (mg/L)(NTUs) 5,90 IT BRUN 0.5 わらみ 25.0 56 24.9 3.5 5.4b 70 17.3 3.64 6.1 118 705 RI NON

24.5

Sample Collection: Date Sampled: Sampling Method: Disposable Bailer / Other DC PLMC Sample Type: Grab

3.11

Sample ID	# of containers	Container Type	Preservation	Analysis	Time
Upon - J	3	40-mL VOA	Ice/HCI	TPHg / BTEX (8260)	1530
INU -2	1	1-L Amber	ICE	TRPH (1664)	
Wi-L	1	250-mL Amber	ICE	TPHd (8015M)	
WZ	1	500-mL Poly	HNO3	Total Lead (6010)	
NV -7	1	500-mL Poly	ICE	Bromate / Bromide (300.0) Chromium VI (7199) / pH (150.1)***	
W -2	1	500-mL Poly	HNO3	Molybdenum (200.7) / Selenium (200.9) / Vanadium (200.7)**** = Dissolved (Fig.	eld Filtered)

Comments: SHORT HQLD TIMES***

Signature:

	TER SAMPLING		ΞT	Well/Piezo ID:	MW-5								
ENSR No.	122 Leslie St., Ul 06940-264-100 813	kiah, CA		Well 🔀	Piezometer								
Well Purging Date Purged:	: 1/20/06 I: Disposable baile al: P r: er: 7.	<i>IC</i> 2.00		Volume Factor (VF) 80% Recovery f	Veather Conditions: COLO + CUP. olume 3/4" = 0.02 1" = 0.04 2" = .16 3" = .38								
Time	Volume Removed	DO	Redox Potential (ORP)	Temperature	Specific Conductivity	рН	Turbidity	Color/Clarity	Other	Other			
	(gal)	(mg/L)	(mVolts)	(°C)	(uS/cm)		(NTUs)		***************************************	~~~~~~			
1558	0 0.5	*t.18	φ	10.5	27.0	5.31	(88)	GREY					
1202	1 3.5	2.72	12	16.9	29.7	5.45	170	CLR					
1606	26.5	2-,08	<u> </u>	7.0	23.3	5-20	137						
1611	3 9.5	2.01	22	169	2Z.	5.36	109	CLR					
1	4			· ·									
Sampling Met Sample Type:	ection: (20/0) d: disposable E Grab	3ailer / Other	tainer Type	Preservation			Analysis			Time			
	3		-mL VOA	***************************************	TPHa / RTEX (826	.n\	, .,	.,		1622			
	1	·	L Amber	Preservation	+ *								
	1		-mL Amber	Ice	TPHd (8015M)								
	1	·	0-mL Poly	. HNO3	Total Lead (6010)					+			
<u> </u>	1	300	√-ira⊑ i" Oly	THYOO	TOTAL COOL (0010)					1			
										 			
Comments:	* Dur	USIFIE HOWE	D Brown 00 = 5.2 1	Folia OA	Proble								
Signatura:	_ < 1	1			Data	7/20	lev.						

7	Well Diameter Total Depth: Depth to Wate	. storija		in. ft from TOC ft from TOC			6" = 1.50		
7	Total Depth:	. William State of the Control of th	24.11	ft from TOC	Factor (VF)	4" = .66 5" = 1.02 6	6" = 1.50		
(Casing Materia		VC		Weather Condition	ons: Comp +		.	
I	Well Purging: Date Purged:_	4 10/0	6		Field Tech(s):	JOR			
; [Site Address: ENSR No.	FER SAMPLING 122 Leslie St., U 06940-264-100 813		:T	F	MW-1 Piezometer			

	(gal)	(mg/L)	(mVolts)	(°C)	(uS/cm)		(NTUs)	
1638	005	3.27	30	17.27	-32.4	5 35	680	CLR + 5-12:1000
1642	1 20,5	1.04	19	17.8	33.7	5.42	384	1010 - 500 000
1647_	2 6.5	0.75	<u> </u>	1901	194.0	5.36	(53	LOW TORRESPONDE
652	3 9.5	0.08		184	9-1.1	E 34	117	CV2 + Sm 582
	4					/		
						17.5		

Sample Collection: 2/20/06

Date Sampled: 2/20/06

Sampling Method: Disposable Bailer / Other DCPCWP/
Sample Type: Grab

Sample ID	# of containers	Container Type	Preservation	Analysis	Time
MV -1	3	40-mL VOA	Ice/HCI	TPHg / BTEX (8260)	1724
نيلا	1 .	1-L Amber	None	TRPH (1664)	-
1402-1	1.	250-mL Amber	None	TPHd (8015M)	
W-1	1	500-mL Poly	HNO3	Total Lead (6010)	
[WW-1]	1	500-mL Poly	ICE	Bromate / Bromide (300.0) Chromium VI (7199) / pH (150.1)***	
JW -I DUP	1	500-mL Poly	HNO3	Molybdenum (200.7) / Selenium (200.9) / Vanadium (200.7)**** = Dissolved (Fiel	d Filtered)
DÚP	3	40-mL glass vial	Ice/HCI	TPHg / BTEX (8260)	

Comments: D	UPLICATE Samples	TPHg/BTEX ONLY	SHORT HOLD TIME ***	GITHERNE C	SON S	
<u>X</u>	MRH GWd	2 Do 50.88	11.0 /951 550AN			
********	Y V				~	
Signatura		1	V	, /		

Signature:

Other

ENSR AECOM

CHAIN OF CUSTODY

Page 1_ of

Lab: CLS

Report results to:																		
lame Paul Wadding												Pro	iect	Info	orm	ation		
Company														dres		122 Leslie Street, Ukiah		
Mailing Address	10461 Old Placerville Road, Suite 170												SR 1			06940-264-100		
City, State, Zip	Sacramento, CA 95827				-	•							Unocal No.			813		
Felephone No. Fax No.	916-362-7 ² 916-362-8 ²				1			_						DN	0.	T0604593441		
E-Mail		a@ensr.cor	n			ī	1	Ana	lyse		que		1	T		1 / ENSK		
pecial instructions and/or										Bromate (300) / Bromide (300.0)		Molybdenum / Vanadium (200.7)				(Copy)		
Detection limit for Var										Hic C		adiu						
etection limit for Sel	enium by(200) must be	<5 ug/L					6		B ₂₀	199	'ans	_			-		
Detection limit for Mol	ybdenum by((200.9) musi	t be <20 ug/	L.		a a		901		(0	(7		(200.9)					
etection limit for Bro	mate (300.0)ı	must be <5	ug/L		(8015)	(8021	664) pe	015	(30	٦ ا	nun	ر2(1 (- e	
Petection limit for Bro		SECTION OF THE PROPERTY OF THE	A STATE OF THE STA	Programme and the second		8)	17	Le	1(8)	ate	mitu	apc	ium	(150.1)			vatin	
ample Identification	Date Sampled	Time Sampled	Matrix/ Media	No. of	TPHg	BTEX	TRPH (1664)	Total Lead (6010)	TPHd (8015)	Lon	Chromium VI (7199)	loly	Selenium	pH (1		Sample Condition/Comments	Preservative	
/IW-1	2/20/06	1724	GW	Conts.	X	Х	<u> </u>	 									_	
/IW-2	2/20/00	1530	GW	8	^ X	X	X	X	X	X	X	X	X	X			HCI/HN	
/IW-3	2/20/00	1435	GW	6	^ X	X	X	<u>^</u>	X	Х	Х	Х	X	Х			HCI/HN	
NW-4	2/20/06	1358	GW	6	X	X	X	X	X								HCI/HN	
1W-5	425/00	1622	GW	6	X	X	x	X	X								HCI/HN	
1W-6	2/2/06	1125	GW	6	X	X	X	X	X								HCI/HN	
/W-7	2/20/00	1320	GW	6	X	X	X	X	X								HCI/HN	
1W-8	2/20/00	1215	GW	6	X	X	X	X	X								HCI/HN	
1W-9	2/20/00	1050	GW	6	X	X	X	X	X								HCI/HN	
)UP	2/20/06	*	GW	2	X	X		Ĥ	L			\dashv					HCI/HN	
QA .	2/20/00	**	Liquid	2	X	X											HCIAC	
	DP-		· · · · · · · · · · · · · · · · · · ·	4/20/	*		>	Col	lect	or's	Sia	nafû	re:	4/	2	Date/Time 7/	ce 2a/ 04	
Collected by:					Collector's Signature: Received by:								The same of the sa	ŢΨ	T.	M. SMITH Date/Time 2/2		
-	SOR		Dute/ Hille	***************************************										* *	00000000000000000000000000000000000000			
Collected by: Relinquished by: Relinquished by:	SOR		Date/Time					Rec	eive	ed b	y:					Date/Time	,	

ATTACHMENT C

LABORATORY ANALYTICAL RESULTS WITH CHAIN-OF-CUSTODY DOCUMENTATION

3249 Fitzgerald Road Rancho Cordova, CA 95742

February 28, 2006

CLS Work Order #: CPB0616 COC #:

Paul Wadding ENSR - Sacramento 10461 Old Placerville Rd., Suite 170 Sacramento, CA 95827-2508

Project Name: Frmr. Unocal #0813, 122 Leslie St.

Ukiah, Ca.

Enclosed are the results of analyses for samples received by the laboratory on 02/21/06 12:20. Samples were analyzed pursuant to client request utilizing EPA or other ELAP approved methodologies. I certify that the results are in compliance both technically and for completeness.

Analytical results are attached to this letter. Please call if we can provide additional assistance.

Sincerely,

James Liang, Ph.D. Laboratory Director

CA DOHS ELAP Accreditation/Registration number 1233

Page 1 of 19 02/28/06 14:51

ENSR - Sacramento Project: Frmr. Unocal #0813, 122 Leslie St. Ukiah, Ca.

10461 Old Placerville Rd., Suite 170 Project Number: 06940-264-100 CLS Work Order #: CPB0616

Sacramento, CA 95827-2508 Project Manager: Paul Wadding COC #:

															TAT: Standard
Report results to: Name Company Mailing Address City, State, Zip Telephone No. Fax No.	916-362-7 916-362-8	Placerville to, CA 9582 100 100	27	e 170	- - - -			Ana	lyse	s Re	eque	Site EN Und Glo	SR I ocal	dress: No.	Trmation 122 Leslie Street, Ukiah 06940-264-100 813
E-Mail	pwadding	g@ensr.cor	<u>m</u>		-					(0.0)		(2007)			
Special instructions and/or Detection limit for Van Detection limit for Sele Detection limit for Mol Detection limit for Bro Detection limit for Bro	adium by 20 enium by(200 ybdenum by(mate (300.0)) mide (300.0)	0.7 must be 0.9) must be (200.9) must must be <5 must be <15 Time	<10 ug/L <5 ug/L t be <20 ug/ ug/L 5 ug/L Matrix/	No. of	TPHg (8015)	BTEX (8021B)	TRPH (1664)	Total Lead (6010)	TPHd (8015)	Bromate (300) / Bromide (300.0)	Chromium VI (7199)	Molybdenum / Vanadium	Selenium (200.9)	pH (150.1)	Sample Condition/Comments
Sample Identification MW-1	Sampled 2/20 do	Sampled 1724	Media	Conts.	X	X	X	X		X					P. P
MW-2	2/20/00	1530	GW	8	X	X	X	X	X	X	X	X	X	X	HCI/HNO3
MW-3	2/20/00	1435	GW	6	X	-	X	X	X	^	^	^	^	^	HCI/HNO3
MW-4	2/20/06	1358	GW	6	X		X	X	X						HCI/HNO3
MW-5	420/00	1622	GW	6	X	X	X	X	X						HC//HNO3
MW-6	2/20/06	1125	GW	6	X	X	X	X	X						HCI/HNO3
MW-7	2/20/00	1320	GW	6	X	Х	X	X	X						HCUHNO3
MW-8	2/20/00	1215	GW	6	X	X	Χ	X	X						HC/HN03
MW-9	2/20/00	1050	GW	6	Х	X	X	X	X						HCI/HNO3
DUP	2/20/06	*	GW	2	X	X									HCI/HNO3
QA	2/20/00	20	Liquid	2	X	X									HC/ICE
Collected by: Relinquished by: Relinquished by: Method of Shipment	JOR JOR		Date/Time Date/Time Date/Time	2/2/	04,1	180	5	Rec	eive	d b	y: y:		on R	cpt:	Date/Time 2/22/06 1900 M. SM171+ Date/Time 2 21 01 084 Date/Time 2 21-6 122

Page 2 of 19 02/28/06 14:51

ENSR - Sacramento Project: Frmr. Unocal #0813, 122 Leslie St. Ukiah, Ca.

10461 Old Placerville Rd., Suite 170 Project Number: 06940-264-100 CLS Work Order #: CPB0616

Sacramento, CA 95827-2508 Project Manager: Paul Wadding COC #:

Conventional Chemistry Parameters by APHA/EPA Methods

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
MW-1 (CPB0616-01) Water	Sampled: 02/20/06 17:24	Received:	02/21/06	12:20					
Bromate	ND	0.020	mg/L	1	CP01308	02/22/06	02/22/06	EPA 300.0	
Bromide	ND	0.10	"	"	CP01332	02/23/06	02/23/06	"	
Hexavalent Chromium	ND	1.0	$\mu g/L$	"	CP01260	02/21/06	02/21/06	EPA 7199	
Silica Gel Treated HEM (SGT-HEM)	12	5.0	mg/L	"	CP01368	02/23/06	02/24/06	EPA 1664 w/SGT	
pH	6.41		pH Units	"	CP01289	02/21/06	02/21/06	EPA 150.1	
MW-2 (CPB0616-02) Water	Sampled: 02/20/06 15:30	Received:	02/21/06	12:20					
Bromate	ND	0.020	mg/L	1	CP01308	02/22/06	02/22/06	EPA 300.0	
Bromide	ND	0.10	"	"	CP01332	02/23/06	02/23/06	"	
Hexavalent Chromium	ND	1.0	$\mu g/L$	"	CP01260	02/21/06	02/21/06	EPA 7199	
Silica Gel Treated HEM (SGT-	·HEM) ND	5.0	mg/L	"	CP01368	02/23/06	02/24/06	EPA 1664 w/SGT	
pН	6.64		pH Units	"	CP01289	02/21/06	02/21/06	EPA 150.1	
MW-3 (CPB0616-03) Water	Sampled: 02/20/06 14:35	Received:	02/21/06	12:20					
Silica Gel Treated HEM (SGT-	HEM) ND	5.0	mg/L	1	CP01368	02/23/06	02/24/06	EPA 1664 w/SGT	
MW-4 (CPB0616-04) Water	Sampled: 02/20/06 13:58	Received:	02/21/06	12:20					
Silica Gel Treated HEM (SGT-	HEM) ND	5.0	mg/L	1	CP01368	02/23/06	02/24/06	EPA 1664 w/SGT	
MW-5 (CPB0616-05) Water	Sampled: 02/20/06 16:22	Received:	02/21/06	12:20					
Silica Gel Treated HEM (SGT-	HEM) ND	5.0	mg/L	1	CP01368	02/23/06	02/24/06	EPA 1664 w/SGT	
MW-6 (CPB0616-06) Water	Sampled: 02/20/06 11:25	Received:	02/21/06	12:20					
Silica Gel Treated HEM (SGT-	HEM) ND	5.0	mg/L	1	CP01368	02/23/06	02/24/06	EPA 1664 w/SGT	

Page 3 of 19 02/28/06 14:51

ENSR - Sacramento Project: Frmr. Unocal #0813, 122 Leslie St. Ukiah, Ca.

10461 Old Placerville Rd., Suite 170 Project Number: 06940-264-100 CLS Work Order #: CPB0616

Sacramento, CA 95827-2508 Project Manager: Paul Wadding COC #:

Conventional Chemistry Parameters by APHA/EPA Methods

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
MW-7 (CPB0616-07) Water Sample	d: 02/20/06 13:20	Received:	02/21/06	12:20					
Silica Gel Treated HEM (SGT-HEM)	ND	5.0	mg/L	1	CP01368	02/23/06	02/24/06	EPA 1664 w/SGT	
MW-8 (CPB0616-08) Water Sample	d: 02/20/06 12:15	Received:	02/21/06	12:20					
Silica Gel Treated HEM (SGT-HEM)	ND	5.0	mg/L	1	CP01368	02/23/06	02/24/06	EPA 1664 w/SGT	
MW-9 (CPB0616-09) Water Sample	d: 02/20/06 10:50	Received:	02/21/06	12:20					
Silica Gel Treated HEM (SGT-HEM)	ND	5.0	mg/L	1	CP01368	02/23/06	02/24/06	EPA 1664 w/SGT	

CA DOHS ELAP Accreditation/Registration Number 1233

Page 4 of 19 02/28/06 14:51

ENSR - Sacramento Project: Frmr. Unocal #0813, 122 Leslie St. Ukiah, Ca.

10461 Old Placerville Rd., Suite 170 Project Number: 06940-264-100 CLS Work Order #: CPB0616

Sacramento, CA 95827-2508 Project Manager: Paul Wadding COC #:

Extractable Petroleum Hydrocarbons by EPA Method 8015M

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
MW-1 (CPB0616-01) Water	Sampled: 02/20/06 17:24			12:20		1			
Diesel	13	0.25	mg/L	5	CP01296	02/21/06	02/22/06	EPA 8015M	
MW-2 (CPB0616-02) Water	Sampled: 02/20/06 15:30	Received:	02/21/06	12:20					
Diesel	0.55	0.050	mg/L	1	CP01296	02/21/06	02/22/06	EPA 8015M	
MW-3 (CPB0616-03) Water	Sampled: 02/20/06 14:35	Received:	02/21/06	12:20					
Diesel	0.39	0.050	mg/L	1	CP01296	02/21/06	02/22/06	EPA 8015M	
MW-4 (CPB0616-04) Water	Sampled: 02/20/06 13:58	Received:	02/21/06	12:20					
Diesel	ND	0.050	mg/L	1	CP01296	02/21/06	02/22/06	EPA 8015M	
MW-5 (CPB0616-05) Water	Sampled: 02/20/06 16:22	Received:	02/21/06	12:20					
Diesel	ND	0.050	mg/L	1	CP01296	02/21/06	02/22/06	EPA 8015M	
MW-6 (CPB0616-06) Water	Sampled: 02/20/06 11:25	Received:	02/21/06	12:20					
Diesel	ND	0.050	mg/L	1	CP01296	02/21/06	02/22/06	EPA 8015M	
MW-7 (CPB0616-07) Water	Sampled: 02/20/06 13:20	Received:	02/21/06	12:20					
Diesel	ND	0.050	mg/L	1	CP01296	02/21/06	02/22/06	EPA 8015M	
MW-8 (CPB0616-08) Water	Sampled: 02/20/06 12:15	Received:	02/21/06	12:20					
Diesel	ND	0.050	mg/L	1	CP01296	02/21/06	02/22/06	EPA 8015M	
MW-9 (CPB0616-09) Water	Sampled: 02/20/06 10:50	Received:	02/21/06	12:20					
Diesel	ND	0.050	mg/L	1	CP01296	02/21/06	02/22/06	EPA 8015M	

Page 5 of 19 02/28/06 14:51

ENSR - Sacramento Project: Frmr. Unocal #0813, 122 Leslie St. Ukiah, Ca.

10461 Old Placerville Rd., Suite 170 Project Number: 06940-264-100 CLS Work Order #: CPB0616

Sacramento, CA 95827-2508 Project Manager: Paul Wadding COC #:

Gas/BTEX by GC PID/FID

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
MW-1 (CPB0616-01) Water	Sampled: 02/20/06 17:24	Received:	02/21/06	12:20					
Gasoline	1400	50	μg/L	1	CP01462	02/24/06	02/24/06	8015M/8021B	GAS-1
Benzene	ND	0.50	"	"	"	"	"	"	
Toluene	4.4	0.50	"	"	"	"	"	"	
Ethylbenzene	7.6	0.50	"	"	"	"	"	"	
Xylenes (total)	5.6	1.0	"	"	"	"	"	"	
Surrogate: o-Chlorotoluene (G	Gas)	386 %	65	-135	"	"	"	"	QS-4
MW-2 (CPB0616-02) Water	Sampled: 02/20/06 15:30	Received:	02/21/06	12:20					
Gasoline	77	50	μg/L	1	CP01395	02/23/06	02/23/06	8015M/8021B	·
Benzene	ND	0.50	"	"	"	"	"	"	
Toluene	ND	0.50	"	"	"	"	"	"	
Ethylbenzene	2.0	0.50	"	"	"	"	"	"	
Xylenes (total)	1.0	1.0	"	"	"	"	"	"	
Surrogate: o-Chlorotoluene (G	Gas)	96.5 %	65	-135	"	"	"	"	
MW-3 (CPB0616-03) Water	Sampled: 02/20/06 14:35	Received:	02/21/06	12:20					
Gasoline	53	50	μg/L	1	CP01395	02/23/06	02/23/06	8015M/8021B	
Benzene	ND	0.50	"	"	"	"	"	"	
Toluene	ND	0.50	"	"	"	"	"	"	
Ethylbenzene	ND	0.50	"	"	"	"	"	"	
Xylenes (total)	ND	1.0	"	"	"	"	"	"	
Surrogate: o-Chlorotoluene (G	Gas)	98.0 %	65	-135	"	"	"	"	
MW-4 (CPB0616-04) Water	Sampled: 02/20/06 13:58	Received:	02/21/06	12:20					
Gasoline	ND	50	μg/L	1	CP01395	02/23/06	02/23/06	8015M/8021B	
Benzene	ND	0.50	"	"	"	"	"	"	
Toluene	ND	0.50	"	"	"	"	"	n .	
Ethylbenzene	ND	0.50	"	"	"	"	"	"	
Xylenes (total)	ND	1.0	"	"	"	"	"	"	
Surrogate: o-Chlorotoluene (G	ias)	88.0 %	65	-135	"	"	"	"	

Page 6 of 19 02/28/06 14:51

ENSR - Sacramento Project: Frmr. Unocal #0813, 122 Leslie St. Ukiah, Ca.

10461 Old Placerville Rd., Suite 170 Project Number: 06940-264-100 CLS Work Order #: CPB0616

Sacramento, CA 95827-2508 Project Manager: Paul Wadding COC #:

Gas/BTEX by GC PID/FID

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
MW-5 (CPB0616-05) Water	Sampled: 02/20/06 16:22	Received:	02/21/06	12:20					
Gasoline	ND	50	μg/L	1	CP01395	02/23/06	02/23/06	8015M/8021B	
Benzene	ND	0.50	"	"	"	"	"	"	
Toluene	ND	0.50	"	"	"	"	"	"	
Ethylbenzene	ND	0.50	"	"	"	"	"	"	
Xylenes (total)	ND	1.0	"	"	"	"	"	"	
Surrogate: o-Chlorotoluene (G	Gas)	91.0 %	65	-135	"	"	"	n .	
MW-6 (CPB0616-06) Water	Sampled: 02/20/06 11:25	Received:	02/21/06	12:20					
Gasoline	ND	50	μg/L	1	CP01395	02/23/06	02/23/06	8015M/8021B	
Benzene	ND	0.50	"	"	"	"	"	"	
Toluene	ND	0.50	"	"	"	"	"	"	
Ethylbenzene	ND	0.50	"	"	"	"	"	"	
Xylenes (total)	ND	1.0	"	"	"	"	"	"	
Surrogate: o-Chlorotoluene (G	Gas)	89.0 %	65	-135	"	"	"	"	
MW-7 (CPB0616-07) Water	Sampled: 02/20/06 13:20	Received:	02/21/06	12:20					
Gasoline	ND	50	μg/L	1	CP01395	02/23/06	02/23/06	8015M/8021B	
Benzene	ND	0.50	"	"	"	"	"	"	
Toluene	ND	0.50	"	"	"	"	"	"	
Ethylbenzene	ND	0.50	"	"	"	"	"	"	
Xylenes (total)	ND	1.0	"	"	"	"	"	"	
Surrogate: o-Chlorotoluene (G	Gas)	89.0 %	65	-135	"	"	"	11	
MW-8 (CPB0616-08) Water	Sampled: 02/20/06 12:15	Received:	02/21/06	12:20					
Gasoline	ND	50	μg/L	1	CP01395	02/23/06	02/23/06	8015M/8021B	
Benzene	ND	0.50	"	"	"	"	"	"	
Toluene	ND	0.50	"	"	"	"	"	"	
Ethylbenzene	ND	0.50	"	"	"	"	"	"	
Xylenes (total)	ND	1.0	"	"	"	"	"	"	
Surrogate: o-Chlorotoluene (G	Gas)	90.5 %	65	-135	"	"	"	"	

Page 7 of 19 02/28/06 14:51

ENSR - Sacramento Project: Frmr. Unocal #0813, 122 Leslie St. Ukiah, Ca.

10461 Old Placerville Rd., Suite 170 Project Number: 06940-264-100 CLS Work Order #: CPB0616

Sacramento, CA 95827-2508 Project Manager: Paul Wadding COC #:

Gas/BTEX by GC PID/FID

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
MW-9 (CPB0616-09) Water	Sampled: 02/20/06 10:50	Received:	02/21/06	12:20					
Gasoline	ND	50	μg/L	1	CP01395	02/23/06	02/23/06	8015M/8021B	
Benzene	ND	0.50	"	"	"	"	"	"	
Toluene	ND	0.50	"	"	"	"	"	"	
Ethylbenzene	ND	0.50	"	"	"	"	"	"	
Xylenes (total)	ND	1.0	"	"	"	"	"	"	
Surrogate: o-Chlorotoluene (G	Gas)	89.5 %	65-	-135	"	"	"	"	
DUP (CPB0616-10) Water	Sampled: 02/20/06 00:00	Received: 02	2/21/06 1	2:20					
Gasoline	1500	50	μg/L	1	CP01462	02/24/06	02/24/06	8015M/8021B	GAS-1
Benzene	ND	0.50	"	"	"	"	"	"	
Toluene	ND	0.50	"	"	"	"	"	"	
Ethylbenzene	7.9	0.50	"	"	"	"	"	"	
Xylenes (total)	5.6	1.0	"	"	"	"	"	"	
Surrogate: o-Chlorotoluene (G	Gas)	487 %	65-	-135	"	"	"	"	QS-4
QA (CPB0616-11) Water Sa	ampled: 02/20/06 00:00 R	Received: 02/	21/06 12	:20					
Gasoline	ND	50	μg/L	1	CP01395	02/23/06	02/23/06	8015M/8021B	
Benzene	ND	0.50	"	"	"	"	"	"	
Toluene	ND	0.50	"	"	"	"	"	"	
Ethylbenzene	ND	0.50	"	"	"	"	"	"	
Xylenes (total)	ND	1.0	"	"	"	n n	n	п	
Surrogate: o-Chlorotoluene (G	ias)	89.0 %	65-	-135	"	"	"	"	

Page 8 of 19 02/28/06 14:51

ENSR - Sacramento Project: Frmr. Unocal #0813, 122 Leslie St. Ukiah, Ca.

10461 Old Placerville Rd., Suite 170 Project Number: 06940-264-100 CLS Work Order #: CPB0616

Sacramento, CA 95827-2508 Project Manager: Paul Wadding COC #:

Metals by EPA 200 Series Methods

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
MW-1 (CPB0616-01) Water	Sampled: 02/20/06 17:24	Received:	02/21/06	5 12:20					
Molybdenum	ND	20	μg/L	1	CP01338	02/23/06	02/23/06	EPA 200.7	
Vanadium	ND	20	"	"	"	"	"	"	
Selenium	ND	5.0	"	"	CP01337	02/23/06	02/23/06	EPA 200.8	
MW-2 (CPB0616-02) Water	Sampled: 02/20/06 15:30	Received:	02/21/06	5 12:20					
Molybdenum	ND	20	$\mu g/L$	1	CP01338	02/23/06	02/23/06	EPA 200.7	
Vanadium	ND	20	"	"	"	"	"	"	
Selenium	ND	5.0	"	"	CP01337	02/23/06	02/23/06	EPA 200.8	

CA DOHS ELAP Accreditation/Registration Number 1233

Page 9 of 19 02/28/06 14:51

ENSR - Sacramento Project: Frmr. Unocal #0813, 122 Leslie St. Ukiah, Ca.

10461 Old Placerville Rd., Suite 170 Project Number: 06940-264-100 CLS Work Order #: CPB0616

Sacramento, CA 95827-2508 Project Manager: Paul Wadding COC #:

Metals by EPA 6000/7000 Series Methods

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
MW-1 (CPB0616-01) Water	Sampled: 02/20/06 17:24	Received:	02/21/06	12:20					
Lead	ND	50	μg/L	1	CP01338	02/23/06	02/23/06	EPA 6010B	
MW-2 (CPB0616-02) Water	Sampled: 02/20/06 15:30	Received:	02/21/06	12:20					
Lead	ND	50	μg/L	1	CP01338	02/23/06	02/23/06	EPA 6010B	
MW-3 (CPB0616-03) Water	Sampled: 02/20/06 14:35	Received:	02/21/06	12:20					
Lead	ND	50	μg/L	1	CP01338	02/23/06	02/23/06	EPA 6010B	
MW-4 (CPB0616-04) Water	Sampled: 02/20/06 13:58	Received:	02/21/06	12:20					
Lead	ND	50	μg/L	1	CP01338	02/23/06	02/23/06	EPA 6010B	
MW-5 (CPB0616-05) Water	Sampled: 02/20/06 16:22	Received:	02/21/06	12:20					
Lead	ND	50	μg/L	1	CP01338	02/23/06	02/23/06	EPA 6010B	
MW-6 (CPB0616-06) Water	Sampled: 02/20/06 11:25	Received:	02/21/06	12:20					
Lead	ND	50	μg/L	1	CP01338	02/23/06	02/23/06	EPA 6010B	
MW-7 (CPB0616-07) Water	Sampled: 02/20/06 13:20	Received:	02/21/06	12:20					
Lead	ND	50	μg/L	1	CP01338	02/23/06	02/23/06	EPA 6010B	
MW-8 (CPB0616-08) Water	Sampled: 02/20/06 12:15	Received:	02/21/06	12:20					
Lead	ND	50	μg/L	1	CP01338	02/23/06	02/23/06	EPA 6010B	
MW-9 (CPB0616-09) Water	Sampled: 02/20/06 10:50	Received:	02/21/06	12:20					
Lead	ND	50	μg/L	1	CP01338	02/23/06	02/23/06	EPA 6010B	

Page 10 of 19 02/28/06 14:51

ENSR - Sacramento Project: Frmr. Unocal #0813, 122 Leslie St. Ukiah, Ca.

10461 Old Placerville Rd., Suite 170 Project Number: 06940-264-100 CLS Work Order #: CPB0616

Sacramento, CA 95827-2508 Project Manager: Paul Wadding COC #:

Conventional Chemistry Parameters by APHA/EPA Methods - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch CP01260 - General Prep										
Blank (CP01260-BLK1)				Prepared of	& Analyze	ed: 02/21/0	06			
Hexavalent Chromium	ND	1.0	μg/L							
LCS (CP01260-BS1)				Prepared of	& Analyze	ed: 02/21/0	06			
Hexavalent Chromium	5.67	1.0	μg/L	5.00	•	113	80-120			
LCS Dup (CP01260-BSD1)				Prepared of	& Analyze	ed: 02/21/0	06			
Hexavalent Chromium	5.03	1.0	μg/L	5.00		101	80-120	12.0	20	
Matrix Spike (CP01260-MS1)	Soi	rce: CPB05	95-01	Prepared of	& Analyze	ed: 02/21/0	06			
Hexavalent Chromium	4.87	1.0	μg/L	5.00	ND	97.4	75-125			
	~	CDD 0.5	05.01	D 1						
Matrix Spike Dup (CP01260-MSD1)	Sou	irce: CPB05	95-01	Prepared a	& Anaiyze	a: 02/21/0	<i>J</i> O			
Matrix Spike Dup (CP01260-MSD1) Hexavalent Chromium	5.62	1.0	95-01 μg/L	5.00	& Anaiyze ND	112	75-125	14.3	25	
								14.3	25	
Hexavalent Chromium					ND	112	75-125	14.3	25	
Hexavalent Chromium Batch CP01308 - General Prep				5.00	ND	112	75-125	14.3	25	
Hexavalent Chromium Batch CP01308 - General Prep Blank (CP01308-BLK1) Bromate	5.62	1.0	μg/L	5.00	ND & Analyze	112 ed: 02/22/0	75-125 06	14.3	25	
Hexavalent Chromium Batch CP01308 - General Prep Blank (CP01308-BLK1)	5.62	1.0	μg/L	5.00 Prepared	ND & Analyze	112 ed: 02/22/0	75-125 06	14.3	25	
Hexavalent Chromium Batch CP01308 - General Prep Blank (CP01308-BLK1) Bromate LCS (CP01308-BS1)	5.62 ND	0.020	μg/L	5.00 Prepared of	ND & Analyze & Analyze	112 ed: 02/22/0 ed: 02/22/0 101	75-125 06 06 80-120	14.3	25	
Hexavalent Chromium Batch CP01308 - General Prep Blank (CP01308-BLK1) Bromate LCS (CP01308-BS1) Bromate	5.62 ND	0.020	μg/L	5.00 Prepared of 0.500	ND & Analyze & Analyze	112 ed: 02/22/0 ed: 02/22/0 101	75-125 06 06 80-120	14.3	25	
Hexavalent Chromium Batch CP01308 - General Prep Blank (CP01308-BLK1) Bromate LCS (CP01308-BS1) Bromate LCS Dup (CP01308-BSD1)	5.62 ND 0.504	0.020	μg/L mg/L mg/L	5.00 Prepared of 0.500 Prepared of 0.500	ND & Analyze & Analyze & Analyze	112 ed: 02/22/0 ed: 02/22/0 101 ed: 02/22/0 99.6	75-125 06 06 80-120 06 80-120			

Page 11 of 19 02/28/06 14:51

ENSR - Sacramento Project: Frmr. Unocal #0813, 122 Leslie St. Ukiah, Ca.

10461 Old Placerville Rd., Suite 170 Project Number: 06940-264-100 CLS Work Order #: CPB0616

Sacramento, CA 95827-2508 Project Manager: Paul Wadding COC #:

Conventional Chemistry Parameters by APHA/EPA Methods - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch CP01308 - General Prep										
Matrix Spike Dup (CP01308-MSD1)	Sou	rce: CPB06	16-01	Prepared	& Analyz	ed: 02/22/	06			
Bromate	0.368	0.020	mg/L	0.500	ND	73.6	75-125	3.88	25	QM-5
Batch CP01332 - General Prep										
Blank (CP01332-BLK1)				Prepared	& Analyz	ed: 02/23/	06			
Bromide	ND	0.10	mg/L							
LCS (CP01332-BS1)				Prepared	& Analyz	ed: 02/23/	06			
Bromide	2.09	0.10	mg/L	2.00		104	80-120			
LCS Dup (CP01332-BSD1)				Prepared	& Analyz	ed: 02/23/	06			
Bromide	2.10	0.10	mg/L	2.00		105	80-120	0.477	20	
Matrix Spike (CP01332-MS1)	Sou	rce: CPB06	59-01	Prepared	& Analyz	ed: 02/23/	06			
Bromide	2.13	0.10	mg/L	2.00	ND	106	75-125			
Matrix Spike Dup (CP01332-MSD1)	Sou	rce: CPB06	59-01	Prepared	& Analyz	ed: 02/23/	06			
Bromide	2.09	0.10	mg/L	2.00	ND	104	75-125	1.90	25	
Batch CP01368 - Solvent Extract										
Blank (CP01368-BLK1)				Prepared:	02/23/06	Analyzed	1: 02/24/06			
Silica Gel Treated HEM (SGT-HEM)	ND	5.0	mg/L							
LCS (CP01368-BS1)				Prepared:	02/23/06	Analyzed	1: 02/24/06			
Silica Gel Treated HEM (SGT-HEM)	41.3	5.0	mg/L	40.0		103	80-120			

Page 12 of 19 02/28/06 14:51

ENSR - Sacramento Project: Frmr. Unocal #0813, 122 Leslie St. Ukiah, Ca.

10461 Old Placerville Rd., Suite 170 Project Number: 06940-264-100 CLS Work Order #: CPB0616

Sacramento, CA 95827-2508 Project Manager: Paul Wadding COC #:

Conventional Chemistry Parameters by APHA/EPA Methods - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch CP01368 - Solvent Extract

LCS Dup (CP01368-BSD1)				Prepared: 02/	23/06 Analyzed	: 02/24/06			
Silica Gel Treated HEM (SGT-HEM)	42.1	5.0	mg/L	40.0	105	80-120	1.92	20	

CA DOHS ELAP Accreditation/Registration Number 1233

Page 13 of 19 02/28/06 14:51

ENSR - Sacramento Project: Frmr. Unocal #0813, 122 Leslie St. Ukiah, Ca.

10461 Old Placerville Rd., Suite 170 Project Number: 06940-264-100 CLS Work Order #: CPB0616

Sacramento, CA 95827-2508 Project Manager: Paul Wadding COC #:

Extractable Petroleum Hydrocarbons by EPA Method 8015M - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch CP01296 - EPA 3510B GCNV										
Blank (CP01296-BLK1)				Prepared:	02/21/06	Analyzed	1: 02/22/06			
Diesel	ND	0.050	mg/L							
Motor Oil	ND	0.050	"							
JP-5/JP-8	ND	0.050	"							
LCS (CP01296-BS1)				Prepared:	02/21/06	Analyzed	1: 02/22/06			
Diesel	2.79	0.050	mg/L	2.50		112	65-135			
LCS Dup (CP01296-BSD1)				Prepared:	02/21/06	Analyzed	1: 02/22/06			
Diesel	2.74	0.050	mg/L	2.50		110	65-135	1.81	30	
Matrix Spike (CP01296-MS1)	So	urce: CPB05	66-01	Prepared:	02/21/06	Analyzed	1: 02/22/06			
Diesel	2.43	0.050	mg/L	2.50	ND	97.2	46-137			
Matrix Spike Dup (CP01296-MSD1)	So	urce: CPB05	66-01	Prepared:	02/21/06	Analyzed	1: 02/22/06			
Diesel	2.46	0.050	mg/L	2.50	ND	98.4	46-137	1.23	30	

Page 14 of 19 02/28/06 14:51

ENSR - Sacramento Project: Frmr. Unocal #0813, 122 Leslie St. Ukiah, Ca.

10461 Old Placerville Rd., Suite 170 Project Number: 06940-264-100 CLS Work Order #: CPB0616 Sacramento, CA 95827-2508

COC #: Project Manager: Paul Wadding

Gas/BTEX by GC PID/FID - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
	Result	Limit	Omis	Level	Result	/UKLC	Limits	KI D	Lillit	110103
Batch CP01395 - EPA 5030 Water GC										
Blank (CP01395-BLK1)				Prepared	& Analyze	ed: 02/23/	06			
Gasoline	ND	50	$\mu g/L$							
Benzene	ND	0.50	"							
Toluene	ND	0.50	"							
Ethylbenzene	ND	0.50	"							
Xylenes (total)	ND	1.0	"							
Surrogate: o-Chlorotoluene (BTEX)	21.0		"	20.0		105	65-135			
Surrogate: o-Chlorotoluene (Gas)	18.2		"	20.0		91.0	65-135			
LCS (CP01395-BS1)				Prepared	& Analyze	ed: 02/23/	06			
Gasoline	415	50	μg/L	500	·	83.0	65-135			
Surrogate: o-Chlorotoluene (Gas)	19.0		"	20.0		95.0	65-135			
LCS Dup (CP01395-BSD1)				Prepared	& Analyze	ed: 02/23/	06			
Gasoline	351	50	μg/L	500		70.2	65-135	16.7	30	
Surrogate: o-Chlorotoluene (Gas)	17.0		"	20.0		85.0	65-135			
Matrix Spike (CP01395-MS1)	So	urce: CPB06	16-08	Prepared	& Analyze	ed: 02/23/	06			
Gasoline	78.2	50	μg/L	500	ND	15.6	65-135			QM-
Surrogate: o-Chlorotoluene (Gas)	3.54		"	20.0		17.7	65-135			QM-
Matrix Spike Dup (CP01395-MSD1)	So	urce: CPB06	16-08	Prepared & Analyzed: 02/23/06						
Gasoline	350	50	μg/L	500	ND	70.0	65-135	127	30	QM-
Surrogate: o-Chlorotoluene (Gas)	18.3		"	20.0		91.5	65-135			QM-
Batch CP01462 - EPA 5030 Water GC										
Blank (CP01462-BLK1)				Prepared	& Analyze	ed: 02/24/	06			
Gasoline	ND	50	μg/L		<u>-</u>					
Benzene	ND	0.50	"							
Toluene	ND	0.50	"							
Ethylbenzene	ND	0.50	"							
Xylenes (total)	ND	1.0	"							

Page 15 of 19 02/28/06 14:51

ENSR - Sacramento Project: Frmr. Unocal #0813, 122 Leslie St. Ukiah, Ca.

10461 Old Placerville Rd., Suite 170 Project Number: 06940-264-100 CLS Work Order #: CPB0616 Sacramento, CA 95827-2508 Project Manager: Paul Wadding COC #:

Gas/BTEX by GC PID/FID - Quality Control

	D 1	Reporting	TT '4	Spike	Source	0/ DEC	%REC	DDD	RPD	NT 4
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch CP01462 - EPA 5030 Water G	С									
Blank (CP01462-BLK1)				Prepared	& Analyze	ed: 02/24/	06			
Surrogate: o-Chlorotoluene (BTEX)	21.6		μg/L	20.0		108	65-135			
Surrogate: o-Chlorotoluene (Gas)	17.8		"	20.0		89.0	65-135			
LCS (CP01462-BS1)				Prepared	& Analyz	ed: 02/24/	06			
Gasoline	355	50	μg/L	500		71.0	65-135			
Surrogate: o-Chlorotoluene (Gas)	19.6		"	20.0		98.0	65-135			
LCS Dup (CP01462-BSD1)				Prepared	& Analyz	ed: 02/24/	06			
Gasoline	407	50	μg/L	500		81.4	65-135	13.6	30	
Surrogate: o-Chlorotoluene (Gas)	19.4		"	20.0		97.0	65-135			
Matrix Spike (CP01462-MS1)	Sou	rce: CPB07	15-05	Prepared & Analyzed: 02/24/06						QM-
Gasoline	1270	50	μg/L	500	2000	NR	65-135			
Surrogate: o-Chlorotoluene (Gas)	14.6		"	20.0		73.0	65-135			
Matrix Spike Dup (CP01462-MSD1)	Sou	rce: CPB07	15-05	Prepared	& Analyze	ed: 02/24/	06			QM-
Gasoline	2200	50	μg/L	500	2000	40.0	65-135	53.6	30	
Surrogate: o-Chlorotoluene (Gas)	21.2		"	20.0		106	65-135			

Page 16 of 19 02/28/06 14:51

ENSR - Sacramento Project: Frmr. Unocal #0813, 122 Leslie St. Ukiah, Ca.

10461 Old Placerville Rd., Suite 170 Project Number: 06940-264-100 CLS Work Order #: CPB0616

Sacramento, CA 95827-2508 Project Manager: Paul Wadding COC #:

Metals by EPA 200 Series Methods - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch CP01337 - EPA 3020A										
Blank (CP01337-BLK1)				Prepared	& Analyz	ed: 02/23/	06			
Selenium	ND	5.0	μg/L							
LCS (CP01337-BS1)				Prepared	& Analyz	ed: 02/23/	06			
Selenium	80.2	5.0	μg/L	100		80.2	80-120			
LCS Dup (CP01337-BSD1)				Prepared	& Analyz	ed: 02/23/	06			
Selenium	79.2	5.0	μg/L	100		79.2	80-120	1.25	20	QM-1
Matrix Spike (CP01337-MS1)	Sour	ce: CPB06	16-01	Prepared	& Analyz	ed: 02/23/	06			
Selenium	79.1	5.0	$\mu g/L$	100	ND	79.1	75-125			
Matrix Spike Dup (CP01337-MSD1)	Sour	ce: CPB06	16-01	Prepared	& Analyz	ed: 02/23/	06			
Selenium	82.8	5.0	$\mu g/L$	100	ND	82.8	75-125	4.57	25	
Batch CP01338 - EPA 3010A										
Blank (CP01338-BLK1)				Prepared	& Analyz	ed: 02/23/	06			
Molybdenum	ND	20	μg/L							
Vanadium	ND	20	"							
LCS (CP01338-BS1)				Prepared	& Analyz	ed: 02/23/	06			
Molybdenum	528	20	μg/L	500		106	80-120			
Vanadium	525	20	"	500		105	80-120			
LCS Dup (CP01338-BSD1)				Prepared	& Analyz	ed: 02/23/	06			
Molybdenum	524	20	μg/L	500		105	80-120	0.760	20	
Vanadium	514	20	"	500		103	80-120	2.12	20	

Page 17 of 19 02/28/06 14:51

ENSR - Sacramento Project: Frmr. Unocal #0813, 122 Leslie St. Ukiah, Ca.

Reporting

10461 Old Placerville Rd., Suite 170 Project Number: 06940-264-100 CLS Work Order #: CPB0616

Sacramento, CA 95827-2508 Project Manager: Paul Wadding COC #:

Metals by EPA 200 Series Methods - Quality Control

Spike

Source

Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch CP01338 - EPA 3010A										
Matrix Spike (CP01338-MS1)	Sour	ce: CPB06	16-01	Prepared	& Analyze	ed: 02/23/	06			
Molybdenum	522	20	μg/L	500	ND	104	75-125			
Vanadium	517	20	"	500	ND	103	75-125			
Matrix Spike Dup (CP01338-MSD1)	Sour	ce: CPB06	16-01	Prepared	& Analyz	ed: 02/23/	06			
Molybdenum	538	20	μg/L	500	ND	108	75-125	3.02	25	
Vanadium	527	20	"	500	ND	105	75-125	1.92	25	

%REC

RPD

Page 18 of 19 02/28/06 14:51

ENSR - Sacramento Project: Frmr. Unocal #0813, 122 Leslie St. Ukiah, Ca.

10461 Old Placerville Rd., Suite 170 Project Number: 06940-264-100 CLS Work Order #: CPB0616

Sacramento, CA 95827-2508 Project Manager: Paul Wadding COC #:

Metals by EPA 6000/7000 Series Methods - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch CP01338 - EPA 3010A										
Blank (CP01338-BLK1)				Prepared	& Analyz	ed: 02/23/	06			
Lead	ND	50	$\mu g/L$							
LCS (CP01338-BS1)				Prepared	& Analyz	ed: 02/23/	06			
Lead	546	50	μg/L	500		109	80-120			
LCS Dup (CP01338-BSD1)				Prepared	& Analyz	ed: 02/23/	06			
Lead	519	50	$\mu g/L$	500		104	80-120	5.07	20	
Matrix Spike (CP01338-MS1)	Sou	rce: CPB06	16-01	Prepared & Analyzed: 02/23/06						
Lead	512	50	μg/L	500	ND	102	75-125			
Matrix Spike Dup (CP01338-MSD1)	Sou	rce: CPB06	16-01	Prepared	& Analyz	ed: 02/23/	06			
Lead	519	50	μg/L	500	ND	104	75-125	1.36	25	

Page 19 of 19 02/28/06 14:51

ENSR - Sacramento Project: Frmr. Unocal #0813, 122 Leslie St. Ukiah, Ca.

10461 Old Placerville Rd., Suite 170 Project Number: 06940-264-100 CLS Work Order #: CPB0616

Sacramento, CA 95827-2508 Project Manager: Paul Wadding COC #:

Notes and Definitions

- QS-4 The surrogate recovery for this sample is outside of established control limits due to a sample matrix effect.
- QM-7 The spike recovery was outside acceptance limits for the MS and/or MSD. The batch was accepted based on acceptable LCS/LCSD recovery.
- QM-5 The spike recovery was outside acceptance limits for the MS and/or MSD due to matrix interference. The LCS and/or LCSD were within acceptance limits showing that the laboratory is in control and the data is acceptable.
- QM-1 The spike recovery was outside acceptance limits for the LCS or LCSD. The batch was accepted based on acceptable MS/MSD recoveries & RPD's.
- GAS-1 Although sample contains compounds in the retention time range associated with gasoline, the chromatogram was not consistent with the expected chromatographic pattern or "fingerprint". However, the reported concentration is based on gasoline.
- DET Analyte DETECTED
- ND Analyte NOT DETECTED at or above the reporting limit
- NR Not Reported
- dry Sample results reported on a dry weight basis
- RPD Relative Percent Difference